浅谈tensorflow中dataset.shuffle和dataset.batch dataset.repeat注意点


Posted in Python onJune 08, 2020

batch很好理解,就是batch size。注意在一个epoch中最后一个batch大小可能小于等于batch size

dataset.repeat就是俗称epoch,但在tf中与dataset.shuffle的使用顺序可能会导致个epoch的混合

dataset.shuffle就是说维持一个buffer size 大小的 shuffle buffer,图中所需的每个样本从shuffle buffer中获取,取得一个样本后,就从源数据集中加入一个样本到shuffle buffer中。

import os
os.environ['CUDA_VISIBLE_DEVICES'] = ""
import numpy as np
import tensorflow as tf
np.random.seed(0)
x = np.random.sample((11,2))
# make a dataset from a numpy array
print(x)
print()
dataset = tf.data.Dataset.from_tensor_slices(x)
dataset = dataset.shuffle(3)
dataset = dataset.batch(4)
dataset = dataset.repeat(2)

# create the iterator
iter = dataset.make_one_shot_iterator()
el = iter.get_next()

with tf.Session() as sess:
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
#源数据集
[[ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]
 [ 0.43758721 0.891773 ]
 [ 0.96366276 0.38344152]
 [ 0.79172504 0.52889492]
 [ 0.56804456 0.92559664]
 [ 0.07103606 0.0871293 ]
 [ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.97861834 0.79915856]]

# 通过shuffle batch后取得的样本
[[ 0.4236548  0.64589411]
 [ 0.60276338 0.54488318]
 [ 0.43758721 0.891773 ]
 [ 0.5488135  0.71518937]]
[[ 0.96366276 0.38344152]
 [ 0.56804456 0.92559664]
 [ 0.0202184  0.83261985]
 [ 0.79172504 0.52889492]]
[[ 0.07103606 0.0871293 ]
 [ 0.97861834 0.79915856]
 [ 0.77815675 0.87001215]] #最后一个batch样本个数为3
[[ 0.60276338 0.54488318]
 [ 0.5488135  0.71518937]
 [ 0.43758721 0.891773 ]
 [ 0.79172504 0.52889492]]
[[ 0.4236548  0.64589411]
 [ 0.56804456 0.92559664]
 [ 0.0202184  0.83261985]
 [ 0.07103606 0.0871293 ]]
[[ 0.77815675 0.87001215]
 [ 0.96366276 0.38344152]
 [ 0.97861834 0.79915856]] #最后一个batch样本个数为3

1、按照shuffle中设置的buffer size,首先从源数据集取得三个样本:
shuffle buffer:
[ 0.5488135 0.71518937]
[ 0.60276338 0.54488318]
[ 0.4236548 0.64589411]
2、从buffer中取一个样本到batch中得:
shuffle buffer:
[ 0.5488135 0.71518937]
[ 0.60276338 0.54488318]
batch:
[ 0.4236548 0.64589411]
3、shuffle buffer不足三个样本,从源数据集提取一个样本:
shuffle buffer:
[ 0.5488135 0.71518937]
[ 0.60276338 0.54488318]
[ 0.43758721 0.891773 ]
4、从buffer中取一个样本到batch中得:
shuffle buffer:
[ 0.5488135 0.71518937]
[ 0.43758721 0.891773 ]
batch:
[ 0.4236548 0.64589411]
[ 0.60276338 0.54488318]
5、如此反复。这就意味中如果shuffle 的buffer size=1,数据集不打乱。如果shuffle 的buffer size=数据集样本数量,随机打乱整个数据集

import os
os.environ['CUDA_VISIBLE_DEVICES'] = ""
import numpy as np
import tensorflow as tf
np.random.seed(0)
x = np.random.sample((11,2))
# make a dataset from a numpy array
print(x)
print()
dataset = tf.data.Dataset.from_tensor_slices(x)
dataset = dataset.shuffle(1)
dataset = dataset.batch(4)
dataset = dataset.repeat(2)

# create the iterator
iter = dataset.make_one_shot_iterator()
el = iter.get_next()

with tf.Session() as sess:
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))

[[ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]
 [ 0.43758721 0.891773 ]
 [ 0.96366276 0.38344152]
 [ 0.79172504 0.52889492]
 [ 0.56804456 0.92559664]
 [ 0.07103606 0.0871293 ]
 [ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.97861834 0.79915856]]

[[ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]
 [ 0.43758721 0.891773 ]]
[[ 0.96366276 0.38344152]
 [ 0.79172504 0.52889492]
 [ 0.56804456 0.92559664]
 [ 0.07103606 0.0871293 ]]
[[ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.97861834 0.79915856]]
[[ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]
 [ 0.43758721 0.891773 ]]
[[ 0.96366276 0.38344152]
 [ 0.79172504 0.52889492]
 [ 0.56804456 0.92559664]
 [ 0.07103606 0.0871293 ]]
[[ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.97861834 0.79915856]]

注意如果repeat在shuffle之前使用:

官方说repeat在shuffle之前使用能提高性能,但模糊了数据样本的epoch关系

import os
os.environ['CUDA_VISIBLE_DEVICES'] = ""
import numpy as np
import tensorflow as tf
np.random.seed(0)
x = np.random.sample((11,2))
# make a dataset from a numpy array
print(x)
print()
dataset = tf.data.Dataset.from_tensor_slices(x)
dataset = dataset.repeat(2)
dataset = dataset.shuffle(11)
dataset = dataset.batch(4)

# create the iterator
iter = dataset.make_one_shot_iterator()
el = iter.get_next()

with tf.Session() as sess:
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))
  print(sess.run(el))

[[ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]
 [ 0.43758721 0.891773 ]
 [ 0.96366276 0.38344152]
 [ 0.79172504 0.52889492]
 [ 0.56804456 0.92559664]
 [ 0.07103606 0.0871293 ]
 [ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.97861834 0.79915856]]

[[ 0.56804456 0.92559664]
 [ 0.5488135  0.71518937]
 [ 0.60276338 0.54488318]
 [ 0.07103606 0.0871293 ]]
[[ 0.96366276 0.38344152]
 [ 0.43758721 0.891773 ]
 [ 0.43758721 0.891773 ]
 [ 0.77815675 0.87001215]]
[[ 0.79172504 0.52889492]  #出现相同样本出现在同一个batch中
 [ 0.79172504 0.52889492]
 [ 0.60276338 0.54488318]
 [ 0.4236548  0.64589411]]
[[ 0.07103606 0.0871293 ]
 [ 0.4236548  0.64589411]
 [ 0.96366276 0.38344152]
 [ 0.5488135  0.71518937]]
[[ 0.97861834 0.79915856]
 [ 0.0202184  0.83261985]
 [ 0.77815675 0.87001215]
 [ 0.56804456 0.92559664]]
[[ 0.0202184  0.83261985]
 [ 0.97861834 0.79915856]]     #可以看到最后个batch为2,而前面都是4

使用案例:

def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
  print('Parsing', filenames)
  def decode_libsvm(line):
    #columns = tf.decode_csv(value, record_defaults=CSV_COLUMN_DEFAULTS)
    #features = dict(zip(CSV_COLUMNS, columns))
    #labels = features.pop(LABEL_COLUMN)
    columns = tf.string_split([line], ' ')
    labels = tf.string_to_number(columns.values[0], out_type=tf.float32)
    splits = tf.string_split(columns.values[1:], ':')
    id_vals = tf.reshape(splits.values,splits.dense_shape)
    feat_ids, feat_vals = tf.split(id_vals,num_or_size_splits=2,axis=1)
    feat_ids = tf.string_to_number(feat_ids, out_type=tf.int32)
    feat_vals = tf.string_to_number(feat_vals, out_type=tf.float32)
    #feat_ids = tf.reshape(feat_ids,shape=[-1,FLAGS.field_size])
    #for i in range(splits.dense_shape.eval()[0]):
    #  feat_ids.append(tf.string_to_number(splits.values[2*i], out_type=tf.int32))
    #  feat_vals.append(tf.string_to_number(splits.values[2*i+1]))
    #return tf.reshape(feat_ids,shape=[-1,field_size]), tf.reshape(feat_vals,shape=[-1,field_size]), labels
    return {"feat_ids": feat_ids, "feat_vals": feat_vals}, labels

  # Extract lines from input files using the Dataset API, can pass one filename or filename list
  dataset = tf.data.TextLineDataset(filenames).map(decode_libsvm, num_parallel_calls=10).prefetch(500000)  # multi-thread pre-process then prefetch

  # Randomizes input using a window of 256 elements (read into memory)
  if perform_shuffle:
    dataset = dataset.shuffle(buffer_size=256)

  # epochs from blending together.
  dataset = dataset.repeat(num_epochs)
  dataset = dataset.batch(batch_size) # Batch size to use

  #return dataset.make_one_shot_iterator()
  iterator = dataset.make_one_shot_iterator()
  batch_features, batch_labels = iterator.get_next()
  #return tf.reshape(batch_ids,shape=[-1,field_size]), tf.reshape(batch_vals,shape=[-1,field_size]), batch_labels
  return batch_features, batch_labels

到此这篇关于浅谈tensorflow中dataset.shuffle和dataset.batch dataset.repeat注意点的文章就介绍到这了,更多相关tensorflow中dataset.shuffle和dataset.batch dataset.repeat内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木! 

Python 相关文章推荐
Python多线程学习资料
Dec 19 Python
python类参数self使用示例
Feb 17 Python
python操作mysql中文显示乱码的解决方法
Oct 11 Python
python实现根据ip地址反向查找主机名称的方法
Apr 29 Python
Python基于多线程实现抓取数据存入数据库的方法
Jun 22 Python
详解python-图像处理(映射变换)
Mar 22 Python
Python 分享10个PyCharm技巧
Jul 13 Python
python并发编程 Process对象的其他属性方法join方法详解
Aug 20 Python
python 3.7.4 安装 opencv的教程
Oct 10 Python
使用keras2.0 将Merge层改为函数式
May 23 Python
Python Flask请求扩展与中间件相关知识总结
Jun 11 Python
python中 Flask Web 表单的使用方法
May 20 Python
Python3通过chmod修改目录或文件权限的方法示例
Jun 08 #Python
win10下python3.8的PIL库安装过程
Jun 08 #Python
python rolling regression. 使用 Python 实现滚动回归操作
Jun 08 #Python
Python selenium爬虫实现定时任务过程解析
Jun 08 #Python
python:HDF和CSV存储优劣对比分析
Jun 08 #Python
Python实现一个简单的毕业生信息管理系统的示例代码
Jun 08 #Python
Python while true实现爬虫定时任务
Jun 08 #Python
You might like
一拳超人中怪人协会钦定! S级别最强四人!
2020/03/02 日漫
Thinkphp自定义代码生成工具及用法说明(附下载地址)
2016/05/27 PHP
visual studio code 调试php方法(图文详解)
2017/09/15 PHP
Laravel模型事件的实现原理详解
2018/03/14 PHP
php PDO属性设置与操作方法分析
2018/12/27 PHP
PHP实现获取毫秒时间戳的方法【使用microtime()函数】
2019/03/01 PHP
js 代码集(学习js的朋友可以看下)
2009/07/22 Javascript
Jquery cookie操作代码
2010/03/14 Javascript
javascript动态添加表格数据行(ASP后台数据库保存例子)
2010/05/08 Javascript
IE6/7/8/9不支持exec的简写方式
2011/05/25 Javascript
Jquery加载时从后台读取数据绑定到dropdownList实例
2013/06/09 Javascript
jquery获取html元素的绝对位置和相对位置的方法
2014/06/20 Javascript
javascript实现随时变化着的背景颜色
2015/04/02 Javascript
JQuery包裹DOM节点的方法
2015/06/11 Javascript
无刷新上传文件并返回自定义值
2015/06/11 Javascript
JS实现带提示的星级评分效果完整实例
2015/10/30 Javascript
有关jQuery中parent()和siblings()的小问题
2016/06/01 Javascript
js中获取 table节点各tr及td的内容简单实例
2016/10/14 Javascript
Vue 中使用vue2-highcharts实现曲线数据展示的方法
2018/03/05 Javascript
vue使用v-for实现hover点击效果
2018/09/29 Javascript
微信小程序如何调用新闻接口实现列表循环
2019/07/02 Javascript
JS表单验证插件之数据与逻辑分离操作实例分析【策略模式】
2020/05/01 Javascript
Python3 适合初学者学习的银行账户登录系统实例
2017/08/08 Python
python3实现SMTP发送邮件详细教程
2018/06/19 Python
用python代码将tiff图片存储到jpg的方法
2018/12/04 Python
用xpath获取指定标签下的所有text的实例
2019/01/02 Python
在python 不同时区之间的差值与转换方法
2019/01/14 Python
捷克体育用品购物网站:D-sport
2017/12/28 全球购物
The Body Shop美体小铺西班牙官网:天然化妆品
2019/06/21 全球购物
CK巴西官方网站:Calvin Klein巴西
2019/07/19 全球购物
什么是URL
2015/12/13 面试题
写演讲稿要注意的六件事
2014/01/14 职场文书
企业内部培训方案
2014/02/04 职场文书
农村面貌改造提升实施方案
2014/03/18 职场文书
学校党委干部个人对照检查材料思想汇报
2014/10/09 职场文书
解析MySQL binlog
2021/06/11 MySQL