Python实现机器学习算法的分类


Posted in Python onJune 03, 2021

Python算法的分类

对葡萄酒数据集进行测试,由于数据集是多分类且数据的样本分布不平衡,所以直接对数据测试,效果不理想。所以使用SMOTE过采样对数据进行处理,对数据去重,去空,处理后数据达到均衡,然后进行测试,与之前测试相比,准确率提升较高。

Python实现机器学习算法的分类

例如:决策树:

Smote处理前:

Python实现机器学习算法的分类

Smote处理后:

Python实现机器学习算法的分类

from typing import Counter
from matplotlib import colors, markers
import numpy as np
import pandas as pd
import operator
import matplotlib.pyplot as plt
from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
# 判断模型预测准确率的模型
from sklearn.metrics import accuracy_score
from sklearn.metrics import roc_auc_score
from sklearn.metrics import f1_score
from sklearn.metrics import classification_report

#设置绘图内的文字
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']


path ="C:\\Users\\zt\\Desktop\\winequality\\myexcel.xls"
# path=r"C:\\Users\\zt\\Desktop\\winequality\\winequality-red.csv"#您要读取的文件路径
# exceldata = np.loadtxt(
#     path,
#     dtype=str,
#     delimiter=";",#每列数据的隔开标志
#     skiprows=1
# )

# print(Counter(exceldata[:,-1]))

exceldata = pd.read_excel(path)
print(exceldata)

print(exceldata[exceldata.duplicated()])
print(exceldata.duplicated().sum())

#去重
exceldata = exceldata.drop_duplicates()


#判空去空
print(exceldata.isnull())
print(exceldata.isnull().sum)
print(exceldata[~exceldata.isnull()])
exceldata = exceldata[~exceldata.isnull()]

print(Counter(exceldata["quality"]))

#smote

#使用imlbearn库中上采样方法中的SMOTE接口
from imblearn.over_sampling import SMOTE
#定义SMOTE模型,random_state相当于随机数种子的作用


X,y = np.split(exceldata,(11,),axis=1)
smo = SMOTE(random_state=10) 

x_smo,y_smo = SMOTE().fit_resample(X.values,y.values)




print(Counter(y_smo))



x_smo = pd.DataFrame({"fixed acidity":x_smo[:,0], "volatile acidity":x_smo[:,1],"citric acid":x_smo[:,2] ,"residual sugar":x_smo[:,3] ,"chlorides":x_smo[:,4],"free sulfur dioxide":x_smo[:,5] ,"total sulfur dioxide":x_smo[:,6] ,"density":x_smo[:,7],"pH":x_smo[:,8] ,"sulphates":x_smo[:,9] ," alcohol":x_smo[:,10]})
y_smo = pd.DataFrame({"quality":y_smo})
print(x_smo.shape)
print(y_smo.shape)
#合并
exceldata = pd.concat([x_smo,y_smo],axis=1)
print(exceldata)

#分割X,y
X,y = np.split(exceldata,(11,),axis=1)
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=10,train_size=0.7)
print("训练集大小:%d"%(X_train.shape[0]))
print("测试集大小:%d"%(X_test.shape[0]))



def func_mlp(X_train,X_test,y_train,y_test):
    print("神经网络MLP:")
    kk = [i for i in range(200,500,50) ] #迭代次数
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    for n in kk:
        method = MLPClassifier(activation="tanh",solver='lbfgs', alpha=1e-5,
                    hidden_layer_sizes=(5, 2), random_state=1,max_iter=n)
        method.fit(X_train,y_train)
        MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto', beta_1=0.9,
                        beta_2=0.999, early_stopping=False, epsilon=1e-08,
                        hidden_layer_sizes=(5, 2), learning_rate='constant',
                        learning_rate_init=0.001, max_iter=n, momentum=0.9,
                        nesterovs_momentum=True, power_t=0.5, random_state=1, shuffle=True,
                        solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False,
                        warm_start=False)
        y_predict = method.predict(X_test)
        t =classification_report(y_test, y_predict, target_names=['3','4','5','6','7','8'],output_dict=True)
        print(t)
        t_accuracy.append(t["accuracy"])
        t_precision.append(t["weighted avg"]["precision"])
        t_recall.append(t["weighted avg"]["recall"])
        t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理MLP")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('迭代次数')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同迭代次数下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('迭代次数')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同迭代次数下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('迭代次数')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同迭代次数下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('迭代次数')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同迭代次数下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()


def func_svc(X_train,X_test,y_train,y_test):
    print("向量机:")
    kk = ["linear","poly","rbf"] #核函数类型
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    for n in kk:
        method = SVC(kernel=n, random_state=0)
        method = method.fit(X_train, y_train)
        y_predic = method.predict(X_test)
        t =classification_report(y_test, y_predic, target_names=['3','4','5','6','7','8'],output_dict=True)
        print(t)
        t_accuracy.append(t["accuracy"])
        t_precision.append(t["weighted avg"]["precision"])
        t_recall.append(t["weighted avg"]["recall"])
        t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理向量机")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('核函数类型')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同核函数类型下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('核函数类型')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同核函数类型下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('核函数类型')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同核函数类型下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('核函数类型')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同核函数类型下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()

def func_classtree(X_train,X_test,y_train,y_test):
    print("决策树:")
    kk = [10,20,30,40,50,60,70,80,90,100] #决策树最大深度
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    for n in kk:
        method = tree.DecisionTreeClassifier(criterion="gini",max_depth=n)
        method.fit(X_train,y_train)
        predic = method.predict(X_test)
        print("method.predict:%f"%method.score(X_test,y_test))

        
        t =classification_report(y_test, predic, target_names=['3','4','5','6','7','8'],output_dict=True)
        print(t)
        t_accuracy.append(t["accuracy"])
        t_precision.append(t["weighted avg"]["precision"])
        t_recall.append(t["weighted avg"]["recall"])
        t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理决策树")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('决策树最大深度')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同决策树最大深度下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('决策树最大深度')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同决策树最大深度下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('决策树最大深度')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同决策树最大深度下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('决策树最大深度')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同决策树最大深度下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()

def func_adaboost(X_train,X_test,y_train,y_test):
    print("提升树:")
    kk = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8]
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    for n in range(100,200,200):
        for k in kk:
            print("迭代次数为:%d\n学习率:%.2f"%(n,k))
            bdt = AdaBoostClassifier(tree.DecisionTreeClassifier(max_depth=2, min_samples_split=20),
                                    algorithm="SAMME",
                                    n_estimators=n, learning_rate=k)
            bdt.fit(X_train, y_train)
            #迭代100次 ,学习率为0.1
            y_pred = bdt.predict(X_test)
            print("训练集score:%lf"%(bdt.score(X_train,y_train)))
            print("测试集score:%lf"%(bdt.score(X_test,y_test)))
            print(bdt.feature_importances_)

            t =classification_report(y_test, y_pred, target_names=['3','4','5','6','7','8'],output_dict=True)
            print(t)
            t_accuracy.append(t["accuracy"])
            t_precision.append(t["weighted avg"]["precision"])
            t_recall.append(t["weighted avg"]["recall"])
            t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理迭代100次(adaboost)")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('学习率')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同学习率下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('学习率')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同学习率下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('学习率')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同学习率下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('学习率')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同学习率下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()


# inX 用于分类的输入向量
# dataSet表示训练样本集
# 标签向量为labels,标签向量的元素数目和矩阵dataSet的行数相同
# 参数k表示选择最近邻居的数目
def classify0(inx, data_set, labels, k):
    """实现k近邻"""
    data_set_size = data_set.shape[0]   # 数据集个数,即行数
    diff_mat = np.tile(inx, (data_set_size, 1)) - data_set   # 各个属性特征做差
    sq_diff_mat = diff_mat**2  # 各个差值求平方
    sq_distances = sq_diff_mat.sum(axis=1)  # 按行求和
    distances = sq_distances**0.5   # 开方
    sorted_dist_indicies = distances.argsort()  # 按照从小到大排序,并输出相应的索引值
    class_count = {}  # 创建一个字典,存储k个距离中的不同标签的数量

    for i in range(k):
        vote_label = labels[sorted_dist_indicies[i]]  # 求出第i个标签

        # 访问字典中值为vote_label标签的数值再加1,
        #class_count.get(vote_label, 0)中的0表示当为查询到vote_label时的默认值
        class_count[vote_label[0]] = class_count.get(vote_label[0], 0) + 1
    # 将获取的k个近邻的标签类进行排序
    sorted_class_count = sorted(class_count.items(), 
    key=operator.itemgetter(1), reverse=True)
    # 标签类最多的就是未知数据的类
    return sorted_class_count[0][0]

def func_knn(X_train,X_test,y_train,y_test):
    print("k近邻:")
    kk = [i for i in range(3,30,5)] #k的取值
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    for n in kk:
        y_predict = []
        for x in X_test.values:
            a = classify0(x, X_train.values, y_train.values, n)  # 调用k近邻分类
            y_predict.append(a)

        t =classification_report(y_test, y_predict, target_names=['3','4','5','6','7','8'],output_dict=True)
        print(t)
        t_accuracy.append(t["accuracy"])
        t_precision.append(t["weighted avg"]["precision"])
        t_recall.append(t["weighted avg"]["recall"])
        t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理k近邻")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('k值')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同k值下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))
    
    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('k值')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同k值下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('k值')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同k值下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('k值')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同k值下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()

def func_randomforest(X_train,X_test,y_train,y_test):
    print("随机森林:")
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    kk = [10,20,30,40,50,60,70,80] #默认树的数量
    for n in kk:
        clf = RandomForestClassifier(n_estimators=n, max_depth=100,min_samples_split=2, random_state=10,verbose=True)
        clf.fit(X_train,y_train)
        predic = clf.predict(X_test)

        print("特征重要性:",clf.feature_importances_)
        print("acc:",clf.score(X_test,y_test))

        t =classification_report(y_test, predic, target_names=['3','4','5','6','7','8'],output_dict=True)
        print(t)
        t_accuracy.append(t["accuracy"])
        t_precision.append(t["weighted avg"]["precision"])
        t_recall.append(t["weighted avg"]["recall"])
        t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理深度100(随机森林)")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('树的数量')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同树的数量下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))
    
    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('树的数量')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同树的数量下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('树的数量')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同树的数量下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('树的数量')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同树的数量下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()






if __name__ == '__main__':
    #神经网络
    print(func_mlp(X_train,X_test,y_train,y_test))
    #向量机
    print(func_svc(X_train,X_test,y_train,y_test))
    #决策树
    print(func_classtree(X_train,X_test,y_train,y_test))
    #提升树
    print(func_adaboost(X_train,X_test,y_train,y_test))
    #knn
    print(func_knn(X_train,X_test,y_train,y_test))
    #randomforest
    print(func_randomforest(X_train,X_test,y_train,y_test))

 

到此这篇关于Python实现机器学习算法的分类的文章就介绍到这了,更多相关Python算法分类内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python处理csv数据的方法
Mar 11 Python
Python 获取当前所在目录的方法详解
Aug 02 Python
Python实现线程状态监测简单示例
Mar 28 Python
Flask框架通过Flask_login实现用户登录功能示例
Jul 17 Python
python 自动重连wifi windows的方法
Dec 18 Python
Python Django 前后端分离 API的方法
Aug 28 Python
Python3加密解密库Crypto的RSA加解密和签名/验签实现方法实例
Feb 11 Python
python实现将列表中各个值快速赋值给多个变量
Apr 02 Python
Keras - GPU ID 和显存占用设定步骤
Jun 22 Python
python搜索算法原理及实例讲解
Nov 18 Python
Python之京东商品秒杀的实现示例
Jan 06 Python
浅谈Python中对象是如何被调用的
Apr 06 Python
Jupyter Notebook 如何修改字体和大小以及更改字体样式
Python数据可视化之用Matplotlib绘制常用图形
使用numpy实现矩阵的翻转(flip)与旋转
Jun 03 #Python
详解Python生成器和基于生成器的协程
实例讲解Python中sys.argv[]的用法
Jun 03 #Python
Django与数据库交互的实现
Jun 03 #Python
Python代码风格与编程习惯重要吗?
Jun 03 #Python
You might like
PHP全概率运算函数(优化版) Webgame开发必备
2011/07/04 PHP
PHP小技巧之JS和CSS优化工具Minify的使用方法
2014/05/19 PHP
destoon实现调用图文新闻的方法
2014/08/21 PHP
谈谈PHP中substr和substring的正确用法及相关参数的介绍
2015/12/16 PHP
PHP7常量数组用法分析
2016/09/26 PHP
清华大学出版的事半功倍系列 javascript全部源代码
2007/05/04 Javascript
javascript对数组的常用操作代码 数组方法总汇
2011/01/27 Javascript
仿新浪微博登陆邮箱提示效果的js代码
2013/08/02 Javascript
实测jquery data()如何存值
2013/08/18 Javascript
Jquery Ajax解析XML数据(同步及异步调用)简单实例
2014/02/12 Javascript
js判断字符长度及中英文数字等
2014/03/19 Javascript
在JavaScript中操作时间之getYear()方法的使用教程
2015/06/11 Javascript
JavaScript中Form表单技术汇总(推荐)
2016/06/26 Javascript
jQuery实现html table行Tr的复制、删除、计算功能
2017/07/10 jQuery
node.js多个异步过程中判断执行是否完成的解决方案
2017/12/10 Javascript
JS实现在文本指定位置插入内容的简单示例
2017/12/22 Javascript
在node环境下parse Smarty模板的使用示例代码
2019/11/15 Javascript
Python的subprocess模块总结
2014/11/07 Python
python BeautifulSoup设置页面编码的方法
2015/04/03 Python
Python中的各种装饰器详解
2015/04/11 Python
Python中基础的socket编程实战攻略
2016/06/01 Python
Python中元组,列表,字典的区别
2017/05/21 Python
django定期执行任务(实例讲解)
2017/11/03 Python
numpy中以文本的方式存储以及读取数据方法
2018/06/04 Python
python调用staf自动化框架的方法
2018/12/26 Python
pymongo中聚合查询的使用方法
2019/03/22 Python
Python流程控制 while循环实现解析
2019/09/02 Python
质检部岗位职责
2013/11/11 职场文书
销售人员职业生涯规划范文
2014/03/01 职场文书
收款授权委托书
2014/10/02 职场文书
三人合伙协议书范本
2014/10/29 职场文书
会计工作岗位职责
2015/02/03 职场文书
一文搞懂php的垃圾回收机制
2021/06/18 PHP
nginx负载功能+nfs服务器功能解析
2022/02/28 Servers
Python中 range | np.arange | np.linspace三者的区别
2022/03/22 Python
threejs太阳光与阴影效果实例代码
2022/04/05 Javascript