Python实现机器学习算法的分类


Posted in Python onJune 03, 2021

Python算法的分类

对葡萄酒数据集进行测试,由于数据集是多分类且数据的样本分布不平衡,所以直接对数据测试,效果不理想。所以使用SMOTE过采样对数据进行处理,对数据去重,去空,处理后数据达到均衡,然后进行测试,与之前测试相比,准确率提升较高。

Python实现机器学习算法的分类

例如:决策树:

Smote处理前:

Python实现机器学习算法的分类

Smote处理后:

Python实现机器学习算法的分类

from typing import Counter
from matplotlib import colors, markers
import numpy as np
import pandas as pd
import operator
import matplotlib.pyplot as plt
from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
# 判断模型预测准确率的模型
from sklearn.metrics import accuracy_score
from sklearn.metrics import roc_auc_score
from sklearn.metrics import f1_score
from sklearn.metrics import classification_report

#设置绘图内的文字
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']


path ="C:\\Users\\zt\\Desktop\\winequality\\myexcel.xls"
# path=r"C:\\Users\\zt\\Desktop\\winequality\\winequality-red.csv"#您要读取的文件路径
# exceldata = np.loadtxt(
#     path,
#     dtype=str,
#     delimiter=";",#每列数据的隔开标志
#     skiprows=1
# )

# print(Counter(exceldata[:,-1]))

exceldata = pd.read_excel(path)
print(exceldata)

print(exceldata[exceldata.duplicated()])
print(exceldata.duplicated().sum())

#去重
exceldata = exceldata.drop_duplicates()


#判空去空
print(exceldata.isnull())
print(exceldata.isnull().sum)
print(exceldata[~exceldata.isnull()])
exceldata = exceldata[~exceldata.isnull()]

print(Counter(exceldata["quality"]))

#smote

#使用imlbearn库中上采样方法中的SMOTE接口
from imblearn.over_sampling import SMOTE
#定义SMOTE模型,random_state相当于随机数种子的作用


X,y = np.split(exceldata,(11,),axis=1)
smo = SMOTE(random_state=10) 

x_smo,y_smo = SMOTE().fit_resample(X.values,y.values)




print(Counter(y_smo))



x_smo = pd.DataFrame({"fixed acidity":x_smo[:,0], "volatile acidity":x_smo[:,1],"citric acid":x_smo[:,2] ,"residual sugar":x_smo[:,3] ,"chlorides":x_smo[:,4],"free sulfur dioxide":x_smo[:,5] ,"total sulfur dioxide":x_smo[:,6] ,"density":x_smo[:,7],"pH":x_smo[:,8] ,"sulphates":x_smo[:,9] ," alcohol":x_smo[:,10]})
y_smo = pd.DataFrame({"quality":y_smo})
print(x_smo.shape)
print(y_smo.shape)
#合并
exceldata = pd.concat([x_smo,y_smo],axis=1)
print(exceldata)

#分割X,y
X,y = np.split(exceldata,(11,),axis=1)
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=10,train_size=0.7)
print("训练集大小:%d"%(X_train.shape[0]))
print("测试集大小:%d"%(X_test.shape[0]))



def func_mlp(X_train,X_test,y_train,y_test):
    print("神经网络MLP:")
    kk = [i for i in range(200,500,50) ] #迭代次数
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    for n in kk:
        method = MLPClassifier(activation="tanh",solver='lbfgs', alpha=1e-5,
                    hidden_layer_sizes=(5, 2), random_state=1,max_iter=n)
        method.fit(X_train,y_train)
        MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto', beta_1=0.9,
                        beta_2=0.999, early_stopping=False, epsilon=1e-08,
                        hidden_layer_sizes=(5, 2), learning_rate='constant',
                        learning_rate_init=0.001, max_iter=n, momentum=0.9,
                        nesterovs_momentum=True, power_t=0.5, random_state=1, shuffle=True,
                        solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False,
                        warm_start=False)
        y_predict = method.predict(X_test)
        t =classification_report(y_test, y_predict, target_names=['3','4','5','6','7','8'],output_dict=True)
        print(t)
        t_accuracy.append(t["accuracy"])
        t_precision.append(t["weighted avg"]["precision"])
        t_recall.append(t["weighted avg"]["recall"])
        t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理MLP")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('迭代次数')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同迭代次数下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('迭代次数')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同迭代次数下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('迭代次数')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同迭代次数下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('迭代次数')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同迭代次数下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()


def func_svc(X_train,X_test,y_train,y_test):
    print("向量机:")
    kk = ["linear","poly","rbf"] #核函数类型
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    for n in kk:
        method = SVC(kernel=n, random_state=0)
        method = method.fit(X_train, y_train)
        y_predic = method.predict(X_test)
        t =classification_report(y_test, y_predic, target_names=['3','4','5','6','7','8'],output_dict=True)
        print(t)
        t_accuracy.append(t["accuracy"])
        t_precision.append(t["weighted avg"]["precision"])
        t_recall.append(t["weighted avg"]["recall"])
        t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理向量机")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('核函数类型')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同核函数类型下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('核函数类型')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同核函数类型下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('核函数类型')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同核函数类型下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('核函数类型')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同核函数类型下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()

def func_classtree(X_train,X_test,y_train,y_test):
    print("决策树:")
    kk = [10,20,30,40,50,60,70,80,90,100] #决策树最大深度
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    for n in kk:
        method = tree.DecisionTreeClassifier(criterion="gini",max_depth=n)
        method.fit(X_train,y_train)
        predic = method.predict(X_test)
        print("method.predict:%f"%method.score(X_test,y_test))

        
        t =classification_report(y_test, predic, target_names=['3','4','5','6','7','8'],output_dict=True)
        print(t)
        t_accuracy.append(t["accuracy"])
        t_precision.append(t["weighted avg"]["precision"])
        t_recall.append(t["weighted avg"]["recall"])
        t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理决策树")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('决策树最大深度')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同决策树最大深度下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('决策树最大深度')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同决策树最大深度下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('决策树最大深度')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同决策树最大深度下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('决策树最大深度')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同决策树最大深度下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()

def func_adaboost(X_train,X_test,y_train,y_test):
    print("提升树:")
    kk = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8]
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    for n in range(100,200,200):
        for k in kk:
            print("迭代次数为:%d\n学习率:%.2f"%(n,k))
            bdt = AdaBoostClassifier(tree.DecisionTreeClassifier(max_depth=2, min_samples_split=20),
                                    algorithm="SAMME",
                                    n_estimators=n, learning_rate=k)
            bdt.fit(X_train, y_train)
            #迭代100次 ,学习率为0.1
            y_pred = bdt.predict(X_test)
            print("训练集score:%lf"%(bdt.score(X_train,y_train)))
            print("测试集score:%lf"%(bdt.score(X_test,y_test)))
            print(bdt.feature_importances_)

            t =classification_report(y_test, y_pred, target_names=['3','4','5','6','7','8'],output_dict=True)
            print(t)
            t_accuracy.append(t["accuracy"])
            t_precision.append(t["weighted avg"]["precision"])
            t_recall.append(t["weighted avg"]["recall"])
            t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理迭代100次(adaboost)")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('学习率')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同学习率下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('学习率')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同学习率下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('学习率')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同学习率下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('学习率')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同学习率下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()


# inX 用于分类的输入向量
# dataSet表示训练样本集
# 标签向量为labels,标签向量的元素数目和矩阵dataSet的行数相同
# 参数k表示选择最近邻居的数目
def classify0(inx, data_set, labels, k):
    """实现k近邻"""
    data_set_size = data_set.shape[0]   # 数据集个数,即行数
    diff_mat = np.tile(inx, (data_set_size, 1)) - data_set   # 各个属性特征做差
    sq_diff_mat = diff_mat**2  # 各个差值求平方
    sq_distances = sq_diff_mat.sum(axis=1)  # 按行求和
    distances = sq_distances**0.5   # 开方
    sorted_dist_indicies = distances.argsort()  # 按照从小到大排序,并输出相应的索引值
    class_count = {}  # 创建一个字典,存储k个距离中的不同标签的数量

    for i in range(k):
        vote_label = labels[sorted_dist_indicies[i]]  # 求出第i个标签

        # 访问字典中值为vote_label标签的数值再加1,
        #class_count.get(vote_label, 0)中的0表示当为查询到vote_label时的默认值
        class_count[vote_label[0]] = class_count.get(vote_label[0], 0) + 1
    # 将获取的k个近邻的标签类进行排序
    sorted_class_count = sorted(class_count.items(), 
    key=operator.itemgetter(1), reverse=True)
    # 标签类最多的就是未知数据的类
    return sorted_class_count[0][0]

def func_knn(X_train,X_test,y_train,y_test):
    print("k近邻:")
    kk = [i for i in range(3,30,5)] #k的取值
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    for n in kk:
        y_predict = []
        for x in X_test.values:
            a = classify0(x, X_train.values, y_train.values, n)  # 调用k近邻分类
            y_predict.append(a)

        t =classification_report(y_test, y_predict, target_names=['3','4','5','6','7','8'],output_dict=True)
        print(t)
        t_accuracy.append(t["accuracy"])
        t_precision.append(t["weighted avg"]["precision"])
        t_recall.append(t["weighted avg"]["recall"])
        t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理k近邻")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('k值')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同k值下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))
    
    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('k值')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同k值下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('k值')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同k值下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('k值')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同k值下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()

def func_randomforest(X_train,X_test,y_train,y_test):
    print("随机森林:")
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    kk = [10,20,30,40,50,60,70,80] #默认树的数量
    for n in kk:
        clf = RandomForestClassifier(n_estimators=n, max_depth=100,min_samples_split=2, random_state=10,verbose=True)
        clf.fit(X_train,y_train)
        predic = clf.predict(X_test)

        print("特征重要性:",clf.feature_importances_)
        print("acc:",clf.score(X_test,y_test))

        t =classification_report(y_test, predic, target_names=['3','4','5','6','7','8'],output_dict=True)
        print(t)
        t_accuracy.append(t["accuracy"])
        t_precision.append(t["weighted avg"]["precision"])
        t_recall.append(t["weighted avg"]["recall"])
        t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理深度100(随机森林)")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('树的数量')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同树的数量下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))
    
    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('树的数量')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同树的数量下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('树的数量')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同树的数量下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('树的数量')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同树的数量下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()






if __name__ == '__main__':
    #神经网络
    print(func_mlp(X_train,X_test,y_train,y_test))
    #向量机
    print(func_svc(X_train,X_test,y_train,y_test))
    #决策树
    print(func_classtree(X_train,X_test,y_train,y_test))
    #提升树
    print(func_adaboost(X_train,X_test,y_train,y_test))
    #knn
    print(func_knn(X_train,X_test,y_train,y_test))
    #randomforest
    print(func_randomforest(X_train,X_test,y_train,y_test))

 

到此这篇关于Python实现机器学习算法的分类的文章就介绍到这了,更多相关Python算法分类内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python 动态获取当前运行的类名和函数名的方法
Apr 15 Python
全面解析Python的While循环语句的使用方法
Oct 13 Python
Python遍历目录中的所有文件的方法
Jul 08 Python
Python实现求两个csv文件交集的方法
Sep 06 Python
matplotlib作图添加表格实例代码
Jan 23 Python
Python使用Scrapy爬虫框架全站爬取图片并保存本地的实现代码
Mar 04 Python
Python3实现的简单验证码识别功能示例
May 02 Python
python 输入一个数n,求n个数求乘或求和的实例
Nov 13 Python
判断python对象是否可调用的三种方式及其区别详解
Jan 31 Python
Python multiprocess pool模块报错pickling error问题解决方法分析
Mar 20 Python
python对csv文件追加写入列的方法
Aug 01 Python
numpy库ndarray多维数组的维度变换方法(reshape、resize、swapaxes、flatten)
Apr 28 Python
Jupyter Notebook 如何修改字体和大小以及更改字体样式
Python数据可视化之用Matplotlib绘制常用图形
使用numpy实现矩阵的翻转(flip)与旋转
Jun 03 #Python
详解Python生成器和基于生成器的协程
实例讲解Python中sys.argv[]的用法
Jun 03 #Python
Django与数据库交互的实现
Jun 03 #Python
Python代码风格与编程习惯重要吗?
Jun 03 #Python
You might like
鸡肋的PHP单例模式应用详解
2013/06/03 PHP
PHP在线生成二维码(google api)的实现代码详解
2013/06/04 PHP
5种PHP创建数组的实例代码分享
2014/01/17 PHP
PHP超牛逼无限极分类生成树方法
2015/05/11 PHP
jWiard 基于JQuery的强大的向导控件介绍
2011/10/28 Javascript
jquery delay()介绍及使用指南
2014/09/02 Javascript
javascript性能优化之DOM交互操作实例分析
2015/12/12 Javascript
新闻上下滚动jquery 超简洁(必看篇)
2017/01/21 Javascript
jQuery插件HighCharts实现的2D面积图效果示例【附demo源码下载】
2017/03/15 Javascript
Bootstrap表单制作代码
2017/03/17 Javascript
Angular.js中ng-include用法及多标签页面的实现方式详解
2017/05/07 Javascript
详解用node.js实现简单的反向代理
2017/06/26 Javascript
js学习心得_一个简单的动画库封装tween.js
2017/07/14 Javascript
NodeJs form-data格式传输文件的方法
2017/12/13 NodeJs
JavaScript 有用的代码片段和 trick
2018/02/22 Javascript
详解微信小程序之一键复制到剪切板
2019/04/24 Javascript
Vue 设置axios请求格式为form-data的操作步骤
2019/10/29 Javascript
jquery实现拖拽添加元素功能
2020/12/01 jQuery
javascript实现固定侧边栏
2021/02/09 Javascript
Python pass 语句使用示例
2014/03/11 Python
python私有属性和方法实例分析
2015/01/15 Python
Python将多个excel表格合并为一个表格
2021/02/22 Python
django中的HTML控件及参数传递方法
2018/03/20 Python
Python OOP类中的几种函数或方法总结
2019/02/22 Python
Python图像处理库PIL中图像格式转换的实现
2020/02/26 Python
python实现梯度法 python最速下降法
2020/03/24 Python
pyautogui自动化控制鼠标和键盘操作的步骤
2020/04/01 Python
python使用信号量动态更新配置文件的操作
2020/04/01 Python
python自动生成证件号的方法示例
2021/01/14 Python
HTML5 Canvas——用路径描画线条实例介绍
2013/06/09 HTML / CSS
AmazeUI 等分网格的实现示例
2020/08/25 HTML / CSS
可持续未来的时尚基础:Alternative Apparel
2019/05/06 全球购物
高中英语演讲稿范文
2014/04/24 职场文书
群众路线自我剖析范文
2014/11/04 职场文书
郭明义电影观后感
2015/06/08 职场文书
安装Windows Server 2012 R2企业版操作系统并设置好相关参数
2022/04/29 Servers