Python tensorflow卷积神经Inception V3网络结构


Posted in Python onMay 06, 2022

前言

学习了Inception V3卷积神经网络,总结一下对Inception V3网络结构和主要代码的理解。

GoogLeNet对网络中的传统卷积层进行了修改,提出了被称为 Inception 的结构,用于增加网络深度和宽度,提高深度神经网络性能。从Inception V1到Inception V4有4个更新版本,每一版的网络在原来的基础上进行改进,提高网络性能。本文介绍Inception V3的网络结构和主要代码。

1 非Inception Module的普通卷积层

首先定义一个非Inception Module的普通卷积层函数inception_v3_base,输入参数inputs为图片数据的张量。第1个卷积层的输出通道数为32,卷积核尺寸为【3x3】,步长为2,padding模式是默认的VALID,第1个卷积层之后的张量尺寸变为(299-3)/2+1=149,即【149x149x32】。

后面的卷积层采用相同的形式,最后张量尺寸变为【35x35x192】。这几个普通的卷积层主要使用了3x3的小卷积核,小卷积核可以低成本的跨通道的对特征进行组合。

def inception_v3_base(inputs,scepe=None):
    with tf.variable_scope(scope,'InceptionV3',[inputs]):
        with slim.arg_scope([slim.conv2d,slim.max_pool2d,slim.avg_pool2d],stride=1,padding='VALID'):            
            # 149 x 149 x 32   
            net = slim.conv2d(inputs,32,[3,3],stride=2,scope='Conv2d_1a_3x3') 
            # 147 x 147 x 32'
            net = slim.conv2d(net,32),[3,3],scope='Conv2d_2a_3x3') 
            # 147 x 147 x 64
            net = slim.conv2d(net,64,[3,3],padding='SAME',scope='Conv2d_2b_3x3')  
            # 73 x 73 x 64
            net = slim.max_pool2d(net, [3, 3], stride=2, scope='MaxPool_3a_3x3')    
            # 73 x 73 x 80 
            net = slim.conv2d(net, 80, [1, 1], scope= 'Conv2d_3b_1x1')      
            # 71 x 71 x 192.
            net = slim.conv2d(net, 192, [3, 3], scope='Conv2d_4a_3x3',reuse=tf.AUTO_REUSE)    
            # 35 x 35 x 192
            net = slim.max_pool2d(net, [3, 3], stride=2, scope= 'MaxPool_5a_3x3')

2 三个Inception模块组

接下来是三个连续的Inception模块组,每个模块组有多个Inception module组成。

下面是第1个Inception模块组,包含了3个类似的Inception module,分别是:Mixed_5b,Mixed_5c,Mixed_5d。第1个Inception module有4个分支,

第1个分支是输出通道为64的【1x1】卷积,

第2个分支是输出通道为48的【1x1】卷积,再连接输出通道为64的【5x5】卷积,

第3个分支是输出通道为64的【1x1】卷积,再连接2个输出通道为96的【3x3】卷积,

第4个分支是【3x3】的平均池化,再连接输出通道为32的【1x1】卷积。

最后用tf.concat将4个分支的输出合并在一起,输出通道之和为54+64+96+32=256,最后输出的张量尺寸为【35x35x256】。

第2个Inception module也有4个分支,与第1个模块类似,只是最后连接输出通道数为64的【1x1】卷积,最后输出的张量尺寸为【35x35x288】。

第3个模块与第2个模块一样。

with slim.arg_scope([slim.conv2d,slim.max_pool2d,slim.avg_pool2d],stride=1,padding='SAME'):
        # 35 x 35 x 256
        end_point = 'Mixed_5b'
        with tf.variable_scope(end_point):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net,depth(64),[1,1],scope='Conv2d_0a_1x1')               
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, depth(48), [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, depth(64), [5, 5], scope='Conv2d_0b_5x5')
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],scope='Conv2d_0b_3x3')
                branch_2 = slim.conv2d(branch_2, depth(96), [3, 3], scope='Conv2d_0c_3x3')
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, depth(32), [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) # 64+64+96+32=256
        end_points[end_point] = net
        # 35 x 35 x 288
        end_point = 'Mixed_5c'
        with tf.variable_scope(end_point):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, depth(48), [1, 1], scope='Conv2d_0b_1x1')
                branch_1 = slim.conv2d(branch_1, depth(64), [5, 5],scope='Conv_1_0c_5x5')
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, depth(64), [1, 1],scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],scope='Conv2d_0b_3x3')
                branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],scope='Conv2d_0c_3x3')
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(net, [3, 3],scope='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, depth(64), [1, 1],scope='Conv2d_0b_1x1')
            net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
        end_points[end_point] = net
        # 35 x 35 x 288
        end_point = 'Mixed_5d'
        with tf.variable_scope(end_point):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, depth(48), [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, depth(64), [5, 5],scope='Conv2d_0b_5x5')
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],scope='Conv2d_0b_3x3')
                branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],scope='Conv2d_0c_3x3')
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, depth(64), [1, 1],scope='Conv2d_0b_1x1')
            net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
        end_points[end_point] = net

第2个Inception模块组包含了5个Inception module,分别是Mixed_6a,Mixed_6b,Mixed_6ac,Mixed_6d,Mixed_6e。

每个Inception module包含有多个分支,第1个Inception module的步长为2,因此图片尺寸被压缩,最后输出的张量尺寸为【17x17x768】。

第2个Inception module采用了Fractorization into small convolutions思想,串联了【1x7】和【7x1】卷积,最后也是将多个通道合并。

第3、4个Inception module与第2个类似,都是用来增加卷积和非线性变化,提炼特征。张量尺寸不变,多个module后仍旧是【17x17x768】。

# 17 x 17 x 768.
        end_point = 'Mixed_6a'
        with tf.variable_scope(end_point):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, depth(384), [3, 3], stride=2,padding='VALID', scope='Conv2d_1a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, depth(96), [3, 3],scope='Conv2d_0b_3x3')
                branch_1 = slim.conv2d(branch_1, depth(96), [3, 3], stride=2,padding='VALID', scope='Conv2d_1a_1x1')
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',scope='MaxPool_1a_3x3')
            net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2]) # (35-3)/2+1=17
        end_points[end_point] = net
        # 17 x 17 x 768.
        end_point = 'Mixed_6b'
        with tf.variable_scope(end_point):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, depth(128), [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, depth(128), [1, 7],scope='Conv2d_0b_1x7')
                branch_1 = slim.conv2d(branch_1, depth(192), [7, 1],scope='Conv2d_0c_7x1')
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, depth(128), [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, depth(128), [7, 1],scope='Conv2d_0b_7x1')
                branch_2 = slim.conv2d(branch_2, depth(128), [1, 7],scope='Conv2d_0c_1x7')
                branch_2 = slim.conv2d(branch_2, depth(128), [7, 1], scope='Conv2d_0d_7x1')
                branch_2 = slim.conv2d(branch_2, depth(192), [1, 7],scope='Conv2d_0e_1x7')
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, depth(192), [1, 1],scope='Conv2d_0b_1x1')
            net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
        end_points[end_point] = net
        print(net.shape)
        # 17 x 17 x 768.
        end_point = 'Mixed_6c'
        with tf.variable_scope(end_point):
            with tf.variable_scope('Branch_0'):
                ranch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, depth(160), [1, 7],scope='Conv2d_0b_1x7')
                branch_1 = slim.conv2d(branch_1, depth(192), [7, 1],scope='Conv2d_0c_7x1')
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, depth(160), [7, 1],scope='Conv2d_0b_7x1')
                branch_2 = slim.conv2d(branch_2, depth(160), [1, 7],scope='Conv2d_0c_1x7')
                branch_2 = slim.conv2d(branch_2, depth(160), [7, 1],scope='Conv2d_0d_7x1')
                branch_2 = slim.conv2d(branch_2, depth(192), [1, 7],scope='Conv2d_0e_1x7')
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, depth(192), [1, 1],scope='Conv2d_0b_1x1')
            net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
        end_points[end_point] = net
        # 17 x 17 x 768.
        end_point = 'Mixed_6d'
        with tf.variable_scope(end_point):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, depth(160), [1, 7], scope='Conv2d_0b_1x7')
                branch_1 = slim.conv2d(branch_1, depth(192), [7, 1], scope='Conv2d_0c_7x1')
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, depth(160), [7, 1], scope='Conv2d_0b_7x1')
                branch_2 = slim.conv2d(branch_2, depth(160), [1, 7], scope='Conv2d_0c_1x7')
                branch_2 = slim.conv2d(branch_2, depth(160), [7, 1], scope='Conv2d_0d_7x1')
                branch_2 = slim.conv2d(branch_2, depth(192), [1, 7], scope='Conv2d_0e_1x7')
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(net, [3, 3], sco e='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, depth(192), [1, 1],scope='Conv2d_0b_1x1')
            net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
        end_points[end_point] = net
        # 17 x 17 x 768.
        end_point = 'Mixed_6e'
        with tf.variable_scope(end_point):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, depth(192), [1, 7],
                                     scope='Conv2d_0b_1x7')
                branch_1 = slim.conv2d(branch_1, depth(192), [7, 1],
                                     scope='Conv2d_0c_7x1')
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, depth(192), [7, 1],
                                     scope='Conv2d_0b_7x1')
                branch_2 = slim.conv2d(branch_2, depth(192), [1, 7],
                                     scope='Conv2d_0c_1x7')
                branch_2 = slim.conv2d(branch_2, depth(192), [7, 1],
                                     scope='Conv2d_0d_7x1')
                branch_2 = slim.conv2d(branch_2, depth(192), [1, 7],
                                     scope='Conv2d_0e_1x7')
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, depth(192), [1, 1],
                                     scope='Conv2d_0b_1x1')
            net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
        end_points[end_point] = net

第3个Inception模块组包含了3个Inception module,分别是Mxied_7a,Mixed_7b,Mixed_7c。

第1个Inception module包含了3个分支,与上面的结构类似,主要也是通过改变通道数、卷积核尺寸,包括【1x1】、【3x3】、【1x7】、【7x1】来增加卷积和非线性变化,提升网络性能。

最后3个分支在输出通道上合并,输出张量的尺寸为【8 x 8 x 1280】。第3个Inception module后得到的张量尺寸为【8 x 8 x 2048】。

# 8 x 8 x 1280.
        end_point = 'Mixed_7a'
        with tf.variable_scope(end_point):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
                branch_0 = slim.conv2d(branch_0, depth(320), [3, 3], stride=2,
                                     padding='VALID', scope='Conv2d_1a_3x3')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, depth(192), [1, 7],
                                     scope='Conv2d_0b_1x7')
                branch_1 = slim.conv2d(branch_1, depth(192), [7, 1],
                                     scope='Conv2d_0c_7x1')
                branch_1 = slim.conv2d(branch_1, depth(192), [3, 3], stride=2,
                                     padding='VALID', scope='Conv2d_1a_3x3')
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',
                                         scope='MaxPool_1a_3x3')
            net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2])
        end_points[end_point] = net
        # 8 x 8 x 2048.
        end_point = 'Mixed_7b'
        with tf.variable_scope(end_point):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, depth(320), [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, depth(384), [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = tf.concat(axis=3, values=[
                  slim.conv2d(branch_1, depth(384), [1, 3], scope='Conv2d_0b_1x3'),
                  slim.conv2d(branch_1, depth(384), [3, 1], scope='Conv2d_0b_3x1')])
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, depth(448), [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(
                  branch_2, depth(384), [3, 3], scope='Conv2d_0b_3x3')
                branch_2 = tf.concat(axis=3, values=[
                  slim.conv2d(branch_2, depth(384), [1, 3], scope='Conv2d_0c_1x3'),
                  slim.conv2d(branch_2, depth(384), [3, 1], scope='Conv2d_0d_3x1')])
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(
                  branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
        end_points[end_point] = net)
        # 8 x 8 x 2048.
        end_point = 'Mixed_7c'
        with tf.variable_scope(end_point):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, depth(320), [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, depth(384), [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = tf.concat(axis=3, values=[
                  slim.conv2d(branch_1, depth(384), [1, 3], scope='Conv2d_0b_1x3'),
                  slim.conv2d(branch_1, depth(384), [3, 1], scope='Conv2d_0c_3x1')])
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, depth(448), [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(
                  branch_2, depth(384), [3, 3], scope='Conv2d_0b_3x3')
                branch_2 = tf.concat(axis=3, values=[
                  slim.conv2d(branch_2, depth(384), [1, 3], scope='Conv2d_0c_1x3'),
                  slim.conv2d(branch_2, depth(384), [3, 1], scope='Conv2d_0d_3x1')])
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(
                  branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
        end_points[end_point] = net

3 Auxiliary Logits、全局平均池化、Softmax分类

Inception V3网络的最后一部分是Auxiliary Logits、全局平均池化、Softmax分类。

首先是Auxiliary Logits,作为辅助分类的节点,对分类结果预测有很大帮助。

先通过end_points['Mixed_6e']得到Mixed_6e后的特征张量,之后接一个【5x5】的平均池化,步长为3,padding为VALID,张量尺寸从第2个模块组的【17x17x768】变为【5x5x768】。

接着连接一个输出通道为128的【1x1】卷积和输出通道为768的【5x5】卷积,输出尺寸变为【1x1x768】。

然后连接输出通道数为num_classes的【1x1】卷积,输出变为【1x1x1000】。最后将辅助分类节点的输出存储到字典表end_points中。

with slim.arg_scope([slim.conv2d,slim.max_pool2d,slim.avg_pool2d],stride=1,padding='SAME'):
            aux_logits = end_points['Mixed_6e']
            print(aux_logits.shape)
            with tf.variable_scope('AuxLogits'):
                aux_logits = slim.avg_pool2d(aux_logits,[5,5],stride=3,padding='VALID',scope='AvgPool_1a_5x5')
                aux_logits = slim.conv2d(aux_logits,depth(128),[1,1],scope='Conv2d_1b_1x1')  # (17-5)/3+1=5
            kernel_size = _reduced_kernel_size_for_small_input(aux_logits, [5, 5])
            aux_logits = slim.conv2d(aux_logits, depth(768), kernel_size, weights_initializer=trunc_normal(0.01),
                                     padding='VALID', scope='Conv2d_2a_{}x{}'.format(*kernel_size))
            aux_logits = slim.conv2d( aux_logits, num_classes, [1, 1], activation_fn=None,
                                      normalizer_fn=None, weights_initializer=trunc_normal(0.001),
                                      scope='Conv2d_2b_1x1')         
            aux_logits = tf.squeeze(aux_logits, [1, 2], name='SpatialSqueeze')
            end_points['AuxLogits'] = aux_logits

最后对最后一个卷积层的输出Mixed_7c进行一个【8x8】的全局平均池化,padding为VALID,输出张量从【8 x 8 x 2048】变为【1 x 1 x 2048】,然后连接一个Dropout层,接着连接一个输出通道数为1000的【1x1】卷积。

使用tf.squeeze去掉输出张量中维数为1的维度。最后用Softmax得到最终分类结果。返回分类结果logits和包含各个卷积后的特征图字典表end_points。

with tf.variable_scope('Logits'):
            kernel_size = _reduced_kernel_size_for_small_input(net, [8, 8])
            net = slim.avg_pool2d(net, kernel_size, padding='VALID',scope='AvgPool_1a_{}x{}'.format(*kernel_size))
            end_points['AvgPool_1a'] = net
            net = slim.dropout(net, keep_prob=dropout_keep_prob, scope='Dropout_1b')
            end_points['PreLogits'] = net 
            logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='Conv2d_1c_1x1')
            logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze')
            end_points['Logits'] = logits
            end_points['Predictions'] = slim.softmax(logits, scope='Predictions')
  return logits,end_points

参考文献:

1. 《TensorFlow实战》

以上就是Python tensorflow卷积神经Inception V3网络结构的详细内容!


Tags in this post...

Python 相关文章推荐
在Linux中通过Python脚本访问mdb数据库的方法
May 06 Python
python实现微信接口(itchat)详细介绍
Oct 23 Python
pygame实现雷电游戏雏形开发
Nov 20 Python
python 实现将多条曲线画在一幅图上的方法
Jul 07 Python
Python hashlib常见摘要算法详解
Jan 13 Python
Python内置类型性能分析过程实例
Jan 29 Python
解决安装新版PyQt5、PyQT5-tool后打不开并Designer.exe提示no Qt platform plugin的问题
Apr 24 Python
Python几种常见算法汇总
Jun 02 Python
Keras中 ImageDataGenerator函数的参数用法
Jul 03 Python
Pycharm安装第三方库失败解决方案
Nov 17 Python
用Python提取PDF表格的方法
Apr 11 Python
Python数据处理的三个实用技巧分享
Apr 01 Python
Python实现Matplotlib,Seaborn动态数据图
May 06 #Python
PYTHON InceptionV3模型的复现详解
代码复现python目标检测yolo3详解预测
讲解Python实例练习逆序输出字符串
May 06 #Python
python turtle绘图
May 04 #Python
python blinker 信号库
May 04 #Python
python三子棋游戏
May 04 #Python
You might like
phpmyadmin操作流程
2006/10/09 PHP
php中require和require_once的区别说明
2014/02/27 PHP
在laravel中使用Symfony的Crawler组件分析HTML
2017/06/19 PHP
PHP单例模式模拟Java Bean实现方法示例
2018/12/07 PHP
PHP反射基础知识回顾
2020/09/10 PHP
简明json介绍
2008/09/28 Javascript
jquery 插件学习(四)
2012/08/06 Javascript
javaScript 计算两个日期的天数相差(示例代码)
2013/12/27 Javascript
js this函数调用无需再次抓获id,name或标签名
2014/03/03 Javascript
JavaScript中输出标签的方法
2014/08/27 Javascript
原生javascript实现Tab选项卡切换功能
2015/01/12 Javascript
jQuery组件easyui基本布局实现代码
2016/08/25 Javascript
jQuery属性选择器用法示例
2016/09/09 Javascript
jQuery事件绑定方法学习总结(推荐)
2016/11/21 Javascript
实现div内部滚动条滚动到底部和顶部的代码
2017/11/15 Javascript
jQuery实现的导航条点击后高亮显示功能示例
2019/03/04 jQuery
js实现从右往左匀速显示图片(无缝轮播)
2020/06/29 Javascript
详解Django中的ifequal和ifnotequal标签使用
2015/07/16 Python
Python之web模板应用
2017/12/26 Python
Python图像处理之简单画板实现方法示例
2018/08/30 Python
在Pandas中给多层索引降级的方法
2018/11/16 Python
python树莓派红外反射传感器
2019/01/21 Python
python对常见数据类型的遍历解析
2019/08/27 Python
Python爬虫实现百度翻译功能过程详解
2020/05/29 Python
用python实现一个简单计算器(完整DEMO)
2020/10/14 Python
Python基于opencv的简单图像轮廓形状识别(全网最简单最少代码)
2021/01/28 Python
使用Html5多媒体实现微信语音功能
2019/07/26 HTML / CSS
沙特阿拉伯电子产品和家用电器购物网站:Black Box
2019/07/24 全球购物
药学专业个人自我评价
2013/11/11 职场文书
财务经理的岗位职责
2013/12/17 职场文书
学生早退检讨书(范文)
2019/08/19 职场文书
golang goroutine顺序输出方式
2021/04/29 Golang
WebRTC记录音视频流(web技术分享)
2022/02/24 Javascript
分享3个非常实用的 Python 模块
2022/03/03 Python
CSS浮动引起的高度塌陷问题
2022/08/05 HTML / CSS
Win11无法安装更新补丁KB3045316怎么办 附KB3045316补丁修复教程
2022/08/14 数码科技