PYTHON InceptionV3模型的复现详解


Posted in Python onMay 06, 2022

学习前言

Inception系列的结构和其它的前向神经网络的结构不太一样,每一层的内容不是直直向下的,而是分了很多的块。

什么是InceptionV3模型

InceptionV3模型是谷歌Inception系列里面的第三代模型,其模型结构与InceptionV2模型放在了同一篇论文里,其实二者模型结构差距不大,相比于其它神经网络模型,Inception网络最大的特点在于将神经网络层与层之间的卷积运算进行了拓展。
如VGG,AlexNet网络,它就是一直卷积下来的,一层接着一层;
ResNet则是创新性的引入了残差网络的概念,使得靠前若干层的某一层数据输出直接跳过多层引入到后面数据层的输入部分,后面的特征层的内容会有一部分由其前面的某一层线性贡献。
而Inception网络则是采用不同大小的卷积核,使得存在不同大小的感受野,最后实现拼接达到不同尺度特征的融合。
对于InceptionV3而言,其网络中存在着如下的结构。
这个结构使用不同大小的卷积核对输入进行卷积(这个结构主要在代码中的block1使用)。
PYTHON InceptionV3模型的复现详解
还存在着这样的结构,利用1x7的卷积和7x1的卷积代替7x7的卷积,这样可以只使用约(1x7 + 7x1) / (7x7) = 28.6%的计算开销;利用1x3的卷积和3x1的卷积代替3x3的卷积,这样可以只使用约(1x3 + 3x1) / (3x3) = 67%的计算开销。
下图利用1x7的卷积和7x1的卷积代替7x7的卷积(这个结构主要在代码中的block2使用)。
PYTHON InceptionV3模型的复现详解
下图利用1x3的卷积和3x1的卷积代替3x3的卷积(这个结构主要在代码中的block3使用)。
PYTHON InceptionV3模型的复现详解

InceptionV3网络部分实现代码

我一共将InceptionV3划分为3个block,对应着35x35、17x17,8x8维度大小的图像。每个block中间有许多的part,对应着不同的特征层深度,用于特征提取。

#-------------------------------------------------------------#
#   InceptionV3的网络部分
#-------------------------------------------------------------#
from __future__ import print_function
from __future__ import absolute_import

import warnings
import numpy as np

from keras.models import Model
from keras import layers
from keras.layers import Activation,Dense,Input,BatchNormalization,Conv2D,MaxPooling2D,AveragePooling2D
from keras.layers import GlobalAveragePooling2D,GlobalMaxPooling2D
from keras.engine.topology import get_source_inputs
from keras.utils.layer_utils import convert_all_kernels_in_model
from keras.utils.data_utils import get_file
from keras import backend as K
from keras.applications.imagenet_utils import decode_predictions
from keras.preprocessing import image


def conv2d_bn(x,
              filters,
              num_row,
              num_col,
              padding='same',
              strides=(1, 1),
              name=None):
    if name is not None:
        bn_name = name + '_bn'
        conv_name = name + '_conv'
    else:
        bn_name = None
        conv_name = None
    x = Conv2D(
        filters, (num_row, num_col),
        strides=strides,
        padding=padding,
        use_bias=False,
        name=conv_name)(x)
    x = BatchNormalization(scale=False, name=bn_name)(x)
    x = Activation('relu', name=name)(x)
    return x


def InceptionV3(input_shape=[299,299,3],
                classes=1000):


    img_input = Input(shape=input_shape)

    x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid')
    x = conv2d_bn(x, 32, 3, 3, padding='valid')
    x = conv2d_bn(x, 64, 3, 3)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv2d_bn(x, 80, 1, 1, padding='valid')
    x = conv2d_bn(x, 192, 3, 3, padding='valid')
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    #--------------------------------#
    #   Block1 35x35
    #--------------------------------#
    # Block1 part1
    # 35 x 35 x 192 -> 35 x 35 x 256
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 32, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=3,
        name='mixed0')

    # Block1 part2
    # 35 x 35 x 256 -> 35 x 35 x 288
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=3,
        name='mixed1')

    # Block1 part3
    # 35 x 35 x 288 -> 35 x 35 x 288
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=3,
        name='mixed2')

    #--------------------------------#
    #   Block2 17x17
    #--------------------------------#
    # Block2 part1
    # 35 x 35 x 288 -> 17 x 17 x 768
    branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid')

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(
        branch3x3dbl, 96, 3, 3, strides=(2, 2), padding='valid')

    branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate(
        [branch3x3, branch3x3dbl, branch_pool], axis=3, name='mixed3')

    # Block2 part2
    # 17 x 17 x 768 -> 17 x 17 x 768
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 128, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 128, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 128, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch7x7, branch7x7dbl, branch_pool],
        axis=3,
        name='mixed4')

    # Block2 part3 and part4
    # 17 x 17 x 768 -> 17 x 17 x 768 -> 17 x 17 x 768
    for i in range(2):
        branch1x1 = conv2d_bn(x, 192, 1, 1)

        branch7x7 = conv2d_bn(x, 160, 1, 1)
        branch7x7 = conv2d_bn(branch7x7, 160, 1, 7)
        branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

        branch7x7dbl = conv2d_bn(x, 160, 1, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

        branch_pool = AveragePooling2D(
            (3, 3), strides=(1, 1), padding='same')(x)
        branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch7x7, branch7x7dbl, branch_pool],
            axis=3,
            name='mixed' + str(5 + i))

    # Block2 part5
    # 17 x 17 x 768 -> 17 x 17 x 768
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 192, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 192, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 192, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch7x7, branch7x7dbl, branch_pool],
        axis=3,
        name='mixed7')

    #--------------------------------#
    #   Block3 8x8
    #--------------------------------#
    # Block3 part1
    # 17 x 17 x 768 -> 8 x 8 x 1280
    branch3x3 = conv2d_bn(x, 192, 1, 1)
    branch3x3 = conv2d_bn(branch3x3, 320, 3, 3,
                          strides=(2, 2), padding='valid')

    branch7x7x3 = conv2d_bn(x, 192, 1, 1)
    branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7)
    branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1)
    branch7x7x3 = conv2d_bn(
        branch7x7x3, 192, 3, 3, strides=(2, 2), padding='valid')

    branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate(
        [branch3x3, branch7x7x3, branch_pool], axis=3, name='mixed8')

    # Block3 part2 part3
    # 8 x 8 x 1280 -> 8 x 8 x 2048 -> 8 x 8 x 2048
    for i in range(2):
        branch1x1 = conv2d_bn(x, 320, 1, 1)

        branch3x3 = conv2d_bn(x, 384, 1, 1)
        branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3)
        branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1)
        branch3x3 = layers.concatenate(
            [branch3x3_1, branch3x3_2], axis=3, name='mixed9_' + str(i))

        branch3x3dbl = conv2d_bn(x, 448, 1, 1)
        branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3)
        branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3)
        branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1)
        branch3x3dbl = layers.concatenate(
            [branch3x3dbl_1, branch3x3dbl_2], axis=3)

        branch_pool = AveragePooling2D(
            (3, 3), strides=(1, 1), padding='same')(x)
        branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch3x3, branch3x3dbl, branch_pool],
            axis=3,
            name='mixed' + str(9 + i))
    # 平均池化后全连接。
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)


    inputs = img_input

    model = Model(inputs, x, name='inception_v3')

    return model

图片预测

建立网络后,可以用以下的代码进行预测。

def preprocess_input(x):
    x /= 255.
    x -= 0.5
    x *= 2.
    return x


if __name__ == '__main__':
    model = InceptionV3()

    model.load_weights("inception_v3_weights_tf_dim_ordering_tf_kernels.h5")
    
    img_path = 'elephant.jpg'
    img = image.load_img(img_path, target_size=(299, 299))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)

    x = preprocess_input(x)

    preds = model.predict(x)
    print('Predicted:', decode_predictions(preds))

预测所需的已经训练好的InceptionV3模型可以在https://github.com/fchollet/deep-learning-models/releases下载。非常方便。
预测结果为:

Predicted: [[('n02504458', 'African_elephant', 0.50874853), ('n01871265', 'tusker', 0.19524273), ('n02504013', 'Indian_elephant', 0.1566972), ('n01917289', 'brain_coral', 0.0008956835), ('n01695060', 'Komodo_dragon', 0.0008260256)]]

这里我推荐一个很不错的blog讲InceptionV3的结构的深度神经网络Google Inception Net-V3结构图里面有每一层的结构图,非常清晰。


Tags in this post...

Python 相关文章推荐
python实现的登录和操作开心网脚本分享
Jul 09 Python
Python实现将DOC文档转换为PDF的方法
Jul 25 Python
python安装PIL模块时Unable to find vcvarsall.bat错误的解决方法
Sep 19 Python
不要用强制方法杀掉python线程
Feb 26 Python
python snownlp情感分析简易demo(分享)
Jun 04 Python
Python数据结构与算法之字典树实现方法示例
Dec 13 Python
python  创建一个保留重复值的列表的补码
Oct 15 Python
python tkinter基本属性详解
Sep 16 Python
python中return如何写
Jun 18 Python
使用pytorch 筛选出一定范围的值
Jun 28 Python
python实现控制台输出颜色
Mar 02 Python
分析Python list操作为什么会错误
Nov 17 Python
代码复现python目标检测yolo3详解预测
讲解Python实例练习逆序输出字符串
May 06 #Python
python turtle绘图
May 04 #Python
python blinker 信号库
May 04 #Python
python三子棋游戏
May 04 #Python
python神经网络 使用Keras构建RNN训练
May 04 #Python
python神经网络学习 使用Keras进行回归运算
May 04 #Python
You might like
一家之言的经验之谈php+mysql扎实个人基本功
2008/03/27 PHP
CI框架给视图添加动态数据
2014/12/01 PHP
php实现对两个数组进行减法操作的方法
2015/04/17 PHP
PHP中is_file()函数使用指南
2015/05/08 PHP
Yii清理缓存的方法
2016/01/06 PHP
PHP实现动态创建XML文档的方法
2018/03/30 PHP
thinkphp5.1 文件引入路径问题及注意事项
2018/06/13 PHP
张孝祥JavaScript学习阶段性总结(2)--(X)HTML学习
2007/02/03 Javascript
JScript中的"this"关键字使用方式补充材料
2007/03/08 Javascript
『jQuery』取指定url格式及分割函数应用
2013/04/22 Javascript
在其他地方你学不到的jQuery小贴士和技巧(欢迎收藏)
2016/01/20 Javascript
vue通信方式EventBus的实现代码详解
2019/06/10 Javascript
聊聊Vue 中 title 的动态修改问题
2019/06/11 Javascript
微信小程序 数据缓存实现方法详解
2019/08/26 Javascript
python服务器端收发请求的实现代码
2014/09/29 Python
python返回昨天日期的方法
2015/05/13 Python
python3抓取中文网页的方法
2015/07/28 Python
Python 类的继承实例详解
2017/03/25 Python
redis之django-redis的简单缓存使用
2018/06/07 Python
详解django.contirb.auth-认证
2018/07/16 Python
详解python 3.6 安装json 模块(simplejson)
2019/04/02 Python
使用PYTHON解析Wireshark的PCAP文件方法
2019/07/23 Python
pycharm修改文件的默认打开方式的步骤
2019/07/29 Python
python [:3] 实现提取数组中的数
2019/11/27 Python
python3中celery异步框架简单使用+守护进程方式启动
2021/01/20 Python
美国按摩椅批发网站:Titan Chair
2018/12/27 全球购物
固特异美国在线轮胎店:Goodyear Tire
2019/02/23 全球购物
六年级数学教学反思
2014/02/03 职场文书
《盲人摸象》教学反思
2014/02/16 职场文书
常务副总经理岗位职责
2014/04/12 职场文书
市场营销专业应届生自荐信
2014/06/19 职场文书
单位租车协议书
2015/01/29 职场文书
Python 如何将integer转化为罗马数(3999以内)
2021/06/05 Python
vue-router中hash模式与history模式的区别
2021/06/23 Vue.js
Python+tkinter实现高清图片保存
2022/03/13 Python
《群青的幻想曲》京力秋树角色PV公开
2022/04/08 日漫