PYTHON InceptionV3模型的复现详解


Posted in Python onMay 06, 2022

学习前言

Inception系列的结构和其它的前向神经网络的结构不太一样,每一层的内容不是直直向下的,而是分了很多的块。

什么是InceptionV3模型

InceptionV3模型是谷歌Inception系列里面的第三代模型,其模型结构与InceptionV2模型放在了同一篇论文里,其实二者模型结构差距不大,相比于其它神经网络模型,Inception网络最大的特点在于将神经网络层与层之间的卷积运算进行了拓展。
如VGG,AlexNet网络,它就是一直卷积下来的,一层接着一层;
ResNet则是创新性的引入了残差网络的概念,使得靠前若干层的某一层数据输出直接跳过多层引入到后面数据层的输入部分,后面的特征层的内容会有一部分由其前面的某一层线性贡献。
而Inception网络则是采用不同大小的卷积核,使得存在不同大小的感受野,最后实现拼接达到不同尺度特征的融合。
对于InceptionV3而言,其网络中存在着如下的结构。
这个结构使用不同大小的卷积核对输入进行卷积(这个结构主要在代码中的block1使用)。
PYTHON InceptionV3模型的复现详解
还存在着这样的结构,利用1x7的卷积和7x1的卷积代替7x7的卷积,这样可以只使用约(1x7 + 7x1) / (7x7) = 28.6%的计算开销;利用1x3的卷积和3x1的卷积代替3x3的卷积,这样可以只使用约(1x3 + 3x1) / (3x3) = 67%的计算开销。
下图利用1x7的卷积和7x1的卷积代替7x7的卷积(这个结构主要在代码中的block2使用)。
PYTHON InceptionV3模型的复现详解
下图利用1x3的卷积和3x1的卷积代替3x3的卷积(这个结构主要在代码中的block3使用)。
PYTHON InceptionV3模型的复现详解

InceptionV3网络部分实现代码

我一共将InceptionV3划分为3个block,对应着35x35、17x17,8x8维度大小的图像。每个block中间有许多的part,对应着不同的特征层深度,用于特征提取。

#-------------------------------------------------------------#
#   InceptionV3的网络部分
#-------------------------------------------------------------#
from __future__ import print_function
from __future__ import absolute_import

import warnings
import numpy as np

from keras.models import Model
from keras import layers
from keras.layers import Activation,Dense,Input,BatchNormalization,Conv2D,MaxPooling2D,AveragePooling2D
from keras.layers import GlobalAveragePooling2D,GlobalMaxPooling2D
from keras.engine.topology import get_source_inputs
from keras.utils.layer_utils import convert_all_kernels_in_model
from keras.utils.data_utils import get_file
from keras import backend as K
from keras.applications.imagenet_utils import decode_predictions
from keras.preprocessing import image


def conv2d_bn(x,
              filters,
              num_row,
              num_col,
              padding='same',
              strides=(1, 1),
              name=None):
    if name is not None:
        bn_name = name + '_bn'
        conv_name = name + '_conv'
    else:
        bn_name = None
        conv_name = None
    x = Conv2D(
        filters, (num_row, num_col),
        strides=strides,
        padding=padding,
        use_bias=False,
        name=conv_name)(x)
    x = BatchNormalization(scale=False, name=bn_name)(x)
    x = Activation('relu', name=name)(x)
    return x


def InceptionV3(input_shape=[299,299,3],
                classes=1000):


    img_input = Input(shape=input_shape)

    x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid')
    x = conv2d_bn(x, 32, 3, 3, padding='valid')
    x = conv2d_bn(x, 64, 3, 3)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv2d_bn(x, 80, 1, 1, padding='valid')
    x = conv2d_bn(x, 192, 3, 3, padding='valid')
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    #--------------------------------#
    #   Block1 35x35
    #--------------------------------#
    # Block1 part1
    # 35 x 35 x 192 -> 35 x 35 x 256
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 32, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=3,
        name='mixed0')

    # Block1 part2
    # 35 x 35 x 256 -> 35 x 35 x 288
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=3,
        name='mixed1')

    # Block1 part3
    # 35 x 35 x 288 -> 35 x 35 x 288
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=3,
        name='mixed2')

    #--------------------------------#
    #   Block2 17x17
    #--------------------------------#
    # Block2 part1
    # 35 x 35 x 288 -> 17 x 17 x 768
    branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid')

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(
        branch3x3dbl, 96, 3, 3, strides=(2, 2), padding='valid')

    branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate(
        [branch3x3, branch3x3dbl, branch_pool], axis=3, name='mixed3')

    # Block2 part2
    # 17 x 17 x 768 -> 17 x 17 x 768
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 128, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 128, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 128, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch7x7, branch7x7dbl, branch_pool],
        axis=3,
        name='mixed4')

    # Block2 part3 and part4
    # 17 x 17 x 768 -> 17 x 17 x 768 -> 17 x 17 x 768
    for i in range(2):
        branch1x1 = conv2d_bn(x, 192, 1, 1)

        branch7x7 = conv2d_bn(x, 160, 1, 1)
        branch7x7 = conv2d_bn(branch7x7, 160, 1, 7)
        branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

        branch7x7dbl = conv2d_bn(x, 160, 1, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

        branch_pool = AveragePooling2D(
            (3, 3), strides=(1, 1), padding='same')(x)
        branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch7x7, branch7x7dbl, branch_pool],
            axis=3,
            name='mixed' + str(5 + i))

    # Block2 part5
    # 17 x 17 x 768 -> 17 x 17 x 768
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 192, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 192, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 192, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch7x7, branch7x7dbl, branch_pool],
        axis=3,
        name='mixed7')

    #--------------------------------#
    #   Block3 8x8
    #--------------------------------#
    # Block3 part1
    # 17 x 17 x 768 -> 8 x 8 x 1280
    branch3x3 = conv2d_bn(x, 192, 1, 1)
    branch3x3 = conv2d_bn(branch3x3, 320, 3, 3,
                          strides=(2, 2), padding='valid')

    branch7x7x3 = conv2d_bn(x, 192, 1, 1)
    branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7)
    branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1)
    branch7x7x3 = conv2d_bn(
        branch7x7x3, 192, 3, 3, strides=(2, 2), padding='valid')

    branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate(
        [branch3x3, branch7x7x3, branch_pool], axis=3, name='mixed8')

    # Block3 part2 part3
    # 8 x 8 x 1280 -> 8 x 8 x 2048 -> 8 x 8 x 2048
    for i in range(2):
        branch1x1 = conv2d_bn(x, 320, 1, 1)

        branch3x3 = conv2d_bn(x, 384, 1, 1)
        branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3)
        branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1)
        branch3x3 = layers.concatenate(
            [branch3x3_1, branch3x3_2], axis=3, name='mixed9_' + str(i))

        branch3x3dbl = conv2d_bn(x, 448, 1, 1)
        branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3)
        branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3)
        branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1)
        branch3x3dbl = layers.concatenate(
            [branch3x3dbl_1, branch3x3dbl_2], axis=3)

        branch_pool = AveragePooling2D(
            (3, 3), strides=(1, 1), padding='same')(x)
        branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch3x3, branch3x3dbl, branch_pool],
            axis=3,
            name='mixed' + str(9 + i))
    # 平均池化后全连接。
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)


    inputs = img_input

    model = Model(inputs, x, name='inception_v3')

    return model

图片预测

建立网络后,可以用以下的代码进行预测。

def preprocess_input(x):
    x /= 255.
    x -= 0.5
    x *= 2.
    return x


if __name__ == '__main__':
    model = InceptionV3()

    model.load_weights("inception_v3_weights_tf_dim_ordering_tf_kernels.h5")
    
    img_path = 'elephant.jpg'
    img = image.load_img(img_path, target_size=(299, 299))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)

    x = preprocess_input(x)

    preds = model.predict(x)
    print('Predicted:', decode_predictions(preds))

预测所需的已经训练好的InceptionV3模型可以在https://github.com/fchollet/deep-learning-models/releases下载。非常方便。
预测结果为:

Predicted: [[('n02504458', 'African_elephant', 0.50874853), ('n01871265', 'tusker', 0.19524273), ('n02504013', 'Indian_elephant', 0.1566972), ('n01917289', 'brain_coral', 0.0008956835), ('n01695060', 'Komodo_dragon', 0.0008260256)]]

这里我推荐一个很不错的blog讲InceptionV3的结构的深度神经网络Google Inception Net-V3结构图里面有每一层的结构图,非常清晰。


Tags in this post...

Python 相关文章推荐
Python获取文件ssdeep值的方法
Oct 05 Python
Python利用多进程将大量数据放入有限内存的教程
Apr 01 Python
详解python string类型 bytes类型 bytearray类型
Dec 16 Python
Python标准库shutil用法实例详解
Aug 13 Python
在win10和linux上分别安装Python虚拟环境的方法步骤
May 09 Python
Django框架之中间件MiddleWare的实现
Dec 30 Python
如何在 Django 模板中输出 "{{"
Jan 24 Python
Python实现动态给类和对象添加属性和方法操作示例
Feb 29 Python
Python趣味实例,实现一个简单的抽奖刮刮卡
Jul 18 Python
详解python os.path.exists判断文件或文件夹是否存在
Nov 16 Python
python 实现逻辑回归
Dec 30 Python
利用Python实时获取steam特惠游戏数据
Jun 25 Python
代码复现python目标检测yolo3详解预测
讲解Python实例练习逆序输出字符串
May 06 #Python
python turtle绘图
May 04 #Python
python blinker 信号库
May 04 #Python
python三子棋游戏
May 04 #Python
python神经网络 使用Keras构建RNN训练
May 04 #Python
python神经网络学习 使用Keras进行回归运算
May 04 #Python
You might like
PHP中使用数组实现堆栈数据结构的代码
2012/02/05 PHP
php保存信息到当前Session的方法
2015/03/16 PHP
PHP iconv()函数字符编码转换的问题讲解
2019/03/22 PHP
jQuery Mobile页面跳转后未加载外部JS原因分析及解决
2013/03/18 Javascript
一个JavaScript递归实现反转数组字符串的实例
2014/10/14 Javascript
jQuery中even选择器的定义和用法
2014/12/23 Javascript
jQuery使用attr()方法同时设置多个属性值用法实例
2015/03/26 Javascript
Javascript 是你的高阶函数(高级应用)
2015/06/15 Javascript
用Move.js配合创建CSS3动画的入门指引
2015/07/22 Javascript
浅谈javascript获取元素transform参数
2015/07/24 Javascript
js实现当复选框选择匿名登录时隐藏登录框效果
2015/08/14 Javascript
基于Turn.js 实现翻书效果实例解析
2016/06/20 Javascript
ES6概念 ymbol.for()方法
2016/12/25 Javascript
Bootstrap 下拉多选框插件Bootstrap Multiselect
2017/01/22 Javascript
NodeJS创建最简单的HTTP服务器
2017/05/15 NodeJs
原生JS实现移动端web轮播图详解(结合Tween算法造轮子)
2017/09/10 Javascript
vue 自定义组件 v-model双向绑定、 父子组件同步通信的多种写法
2017/11/27 Javascript
十分钟教你上手ES2020新特性
2020/02/12 Javascript
js实现自定义右键菜单
2020/05/18 Javascript
JavaScript用document.write()输出换行的示例代码
2020/11/26 Javascript
[08:44]和酒神一起战斗 DOTA2教你做大人
2014/03/27 DOTA
[47:38]Optic vs VGJ.S 2018国际邀请赛小组赛BO2 第二场 8.17
2018/08/20 DOTA
python实现提取百度搜索结果的方法
2015/05/19 Python
python实现宿舍管理系统
2019/11/22 Python
Python中Pyspider爬虫框架的基本使用详解
2021/01/27 Python
深入理解css中vertical-align属性
2017/04/18 HTML / CSS
html5中为audio标签增加停止按钮动作实现方法
2013/01/04 HTML / CSS
蔻驰意大利官网:COACH意大利
2019/01/16 全球购物
亚洲领先的旅游体验市场:Voyagin
2019/11/23 全球购物
函授自我鉴定
2013/11/06 职场文书
将相和教学反思
2014/02/04 职场文书
环保倡议书
2014/04/14 职场文书
小露珠教学反思
2014/04/30 职场文书
职业生涯规划书怎么写?
2014/09/14 职场文书
MySQL 慢查询日志深入理解
2021/04/22 MySQL
Python scrapy爬取起点中文网小说榜单
2021/06/13 Python