初步解析Python下的多进程编程


Posted in Python onApril 28, 2015

要让Python程序实现多进程(multiprocessing),我们先了解操作系统的相关知识。

Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊。普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回。

子进程永远返回0,而父进程返回子进程的ID。这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程的ID。

Python的os模块封装了常见的系统调用,其中就包括fork,可以在Python程序中轻松创建子进程:

# multiprocessing.py
import os

print 'Process (%s) start...' % os.getpid()
pid = os.fork()
if pid==0:
  print 'I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid())
else:
  print 'I (%s) just created a child process (%s).' % (os.getpid(), pid)

运行结果如下:

Process (876) start...
I (876) just created a child process (877).
I am child process (877) and my parent is 876.

由于Windows没有fork调用,上面的代码在Windows上无法运行。由于Mac系统是基于BSD(Unix的一种)内核,所以,在Mac下运行是没有问题的,推荐大家用Mac学Python!

有了fork调用,一个进程在接到新任务时就可以复制出一个子进程来处理新任务,常见的Apache服务器就是由父进程监听端口,每当有新的http请求时,就fork出子进程来处理新的http请求。
multiprocessing

如果你打算编写多进程的服务程序,Unix/Linux无疑是正确的选择。由于Windows没有fork调用,难道在Windows上无法用Python编写多进程的程序?

由于Python是跨平台的,自然也应该提供一个跨平台的多进程支持。multiprocessing模块就是跨平台版本的多进程模块。

multiprocessing模块提供了一个Process类来代表一个进程对象,下面的例子演示了启动一个子进程并等待其结束:

from multiprocessing import Process
import os

# 子进程要执行的代码
def run_proc(name):
  print 'Run child process %s (%s)...' % (name, os.getpid())

if __name__=='__main__':
  print 'Parent process %s.' % os.getpid()
  p = Process(target=run_proc, args=('test',))
  print 'Process will start.'
  p.start()
  p.join()
  print 'Process end.'

执行结果如下:

Parent process 928.
Process will start.
Run child process test (929)...
Process end.

创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动,这样创建进程比fork()还要简单。

join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。
Pool

如果要启动大量的子进程,可以用进程池的方式批量创建子进程:

from multiprocessing import Pool
import os, time, random

def long_time_task(name):
  print 'Run task %s (%s)...' % (name, os.getpid())
  start = time.time()
  time.sleep(random.random() * 3)
  end = time.time()
  print 'Task %s runs %0.2f seconds.' % (name, (end - start))

if __name__=='__main__':
  print 'Parent process %s.' % os.getpid()
  p = Pool()
  for i in range(5):
    p.apply_async(long_time_task, args=(i,))
  print 'Waiting for all subprocesses done...'
  p.close()
  p.join()
  print 'All subprocesses done.'

执行结果如下:

Parent process 669.
Waiting for all subprocesses done...
Run task 0 (671)...
Run task 1 (672)...
Run task 2 (673)...
Run task 3 (674)...
Task 2 runs 0.14 seconds.
Run task 4 (673)...
Task 1 runs 0.27 seconds.
Task 3 runs 0.86 seconds.
Task 0 runs 1.41 seconds.
Task 4 runs 1.91 seconds.
All subprocesses done.

代码解读:

对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。

请注意输出的结果,task 0,1,2,3是立刻执行的,而task 4要等待前面某个task完成后才执行,这是因为Pool的默认大小在我的电脑上是4,因此,最多同时执行4个进程。这是Pool有意设计的限制,并不是操作系统的限制。如果改成:

p = Pool(5)

就可以同时跑5个进程。

由于Pool的默认大小是CPU的核数,如果你不幸拥有8核CPU,你要提交至少9个子进程才能看到上面的等待效果。
进程间通信

Process之间肯定是需要通信的,操作系统提供了很多机制来实现进程间的通信。Python的multiprocessing模块包装了底层的机制,提供了Queue、Pipes等多种方式来交换数据。

我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

from multiprocessing import Process, Queue
import os, time, random

# 写数据进程执行的代码:
def write(q):
  for value in ['A', 'B', 'C']:
    print 'Put %s to queue...' % value
    q.put(value)
    time.sleep(random.random())

# 读数据进程执行的代码:
def read(q):
  while True:
    value = q.get(True)
    print 'Get %s from queue.' % value

if __name__=='__main__':
  # 父进程创建Queue,并传给各个子进程:
  q = Queue()
  pw = Process(target=write, args=(q,))
  pr = Process(target=read, args=(q,))
  # 启动子进程pw,写入:
  pw.start()
  # 启动子进程pr,读取:
  pr.start()
  # 等待pw结束:
  pw.join()
  # pr进程里是死循环,无法等待其结束,只能强行终止:
  pr.terminate()

运行结果如下:

Put A to queue...
Get A from queue.
Put B to queue...
Get B from queue.
Put C to queue...
Get C from queue.

在Unix/Linux下,multiprocessing模块封装了fork()调用,使我们不需要关注fork()的细节。由于Windows没有fork调用,因此,multiprocessing需要“模拟”出fork的效果,父进程所有Python对象都必须通过pickle序列化再传到子进程去,所有,如果multiprocessing在Windows下调用失败了,要先考虑是不是pickle失败了。
小结

在Unix/Linux下,可以使用fork()调用实现多进程。

要实现跨平台的多进程,可以使用multiprocessing模块。

进程间通信是通过Queue、Pipes等实现的。

Python 相关文章推荐
Python MD5文件生成码
Jan 12 Python
Centos5.x下升级python到python2.7版本教程
Feb 14 Python
python简单分割文件的方法
Jul 30 Python
Python实现针对中文排序的方法
May 09 Python
python 中的divmod数字处理函数浅析
Oct 17 Python
TensorFlow实现卷积神经网络
May 24 Python
python处理DICOM并计算三维模型体积
Feb 26 Python
三步实现Django Paginator分页的方法
Jun 11 Python
在SQLite-Python中实现返回、查询中文字段的方法
Jul 17 Python
python GUI框架pyqt5 对图片进行流式布局的方法(瀑布流flowlayout)
Mar 12 Python
Python importlib模块重载使用方法详解
Oct 13 Python
python实现股票历史数据可视化分析案例
Jun 10 Python
python实现将pvr格式转换成pvr.ccz的方法
Apr 28 #Python
简单介绍Python中的JSON使用
Apr 28 #Python
浅析Python中的序列化存储的方法
Apr 28 #Python
详解在Python和IPython中使用Docker
Apr 28 #Python
在Python程序中进行文件读取和写入操作的教程
Apr 28 #Python
介绍Python中的文档测试模块
Apr 28 #Python
Django中几种重定向方法
Apr 28 #Python
You might like
怎样在UNIX系统下安装MySQL
2006/10/09 PHP
不用mod_rewrite直接用php实现伪静态化页面代码
2008/10/04 PHP
php数据结构 算法(PHP描述) 简单选择排序 simple selection sort
2011/08/09 PHP
php微信公众号开发之秒杀
2018/10/20 PHP
IE浏览器PNG图片透明效果代码
2008/09/02 Javascript
Mootools 1.2教程 输入过滤第一部分(数字)
2009/09/15 Javascript
JS setCapture 区域外事件捕捉
2010/03/18 Javascript
js给onclick赋值传参数的两种方法
2013/11/25 Javascript
a标签的href与onclick事件的区别详解
2014/11/12 Javascript
JavaScript中使用自然对数ln的方法
2015/06/14 Javascript
JS表格组件神器bootstrap table详解(基础版)
2015/12/08 Javascript
JavaScript数组实现数据结构中的队列与堆栈
2016/05/26 Javascript
后端接收不到AngularJs中$http.post发送的数据原因分析及解决办法
2016/07/05 Javascript
老生常谈javascript的面向对象思想
2017/08/22 Javascript
vue二级路由设置方法
2018/02/09 Javascript
Angular开发实践之服务端渲染
2018/03/29 Javascript
angularJs中$http获取后台数据的实例讲解
2018/08/08 Javascript
微信小程序自定义可滑动顶部TabBar选项卡实现页面切换功能示例
2019/05/14 Javascript
jQuery子选择器与可见性选择器实例分析
2019/06/28 jQuery
解决layer弹出层中表单不起作用的问题
2019/09/09 Javascript
js获取本日、本周、本月的时间代码
2020/02/01 Javascript
解决微信小程序scroll-view组件无横向滚动的问题
2020/02/04 Javascript
JavaScript语句错误throw、try及catch实例解析
2020/08/18 Javascript
Phantomjs抓取渲染JS后的网页(Python代码)
2016/05/13 Python
用python实现简单EXCEL数据统计的实例
2017/01/24 Python
Python读取指定目录下指定后缀文件并保存为docx
2017/04/23 Python
详解Python开发中如何使用Hook技巧
2017/11/01 Python
Django中间件工作流程及写法实例代码
2018/02/06 Python
在pandas多重索引multiIndex中选定指定索引的行方法
2018/11/16 Python
Python通过文本和图片生成词云图
2020/05/21 Python
HTML5时代CSS设置漂亮字体取代图片
2014/09/04 HTML / CSS
周年庆典主持词
2014/04/02 职场文书
2014幼儿园教师个人工作总结
2014/11/08 职场文书
环卫工人慰问信
2015/02/15 职场文书
五星级酒店宣传口号
2015/12/25 职场文书
我的暑假生活作文(五年级)范文
2019/08/07 职场文书