TENSORFLOW变量作用域(VARIABLE SCOPE)


Posted in Python onJanuary 10, 2020

举例说明

TensorFlow中的变量一般就是模型的参数。当模型复杂的时候共享变量会无比复杂。

官网给了一个case,当创建两层卷积的过滤器时,每输入一次图片就会创建一次过滤器对应的变量,但是我们希望所有图片都共享同一过滤器变量,一共有4个变量:conv1_weights,conv1_biases,conv2_weights, and conv2_biases。

通常的做法是将这些变量设置为全局变量。但是存在的问题是打破封装性,这些变量必须文档化被其他代码文件引用,一旦代码变化,调用方也可能需要变化。

还有一种保证封装性的方式是将模型封装成类。

不过TensorFlow提供了Variable Scope 这种独特的机制来共享变量。这个机制涉及两个主要函数:

tf.get_variable(<name>, <shape>, <initializer>) 创建或返回给定名称的变量
tf.variable_scope(<scope_name>) 管理传给get_variable()的变量名称的作用域

在下面的代码中,通过tf.get_variable()创建了名称分别为weights和biases的两个变量。

def conv_relu(input, kernel_shape, bias_shape):
  # Create variable named "weights".
  weights = tf.get_variable("weights", kernel_shape,
    initializer=tf.random_normal_initializer())
  # Create variable named "biases".
  biases = tf.get_variable("biases", bias_shape,
    initializer=tf.constant_initializer(0.0))
  conv = tf.nn.conv2d(input, weights,
    strides=[1, 1, 1, 1], padding='SAME')
  return tf.nn.relu(conv + biases)

但是我们需要两个卷积层,这时可以通过tf.variable_scope()指定作用域进行区分,如with tf.variable_scope("conv1")这行代码指定了第一个卷积层作用域为conv1,

在这个作用域下有两个变量weights和biases。

def my_image_filter(input_images):
  with tf.variable_scope("conv1"):
    # Variables created here will be named "conv1/weights", "conv1/biases".
    relu1 = conv_relu(input_images, [5, 5, 32, 32], [32])
  with tf.variable_scope("conv2"):
    # Variables created here will be named "conv2/weights", "conv2/biases".
    return conv_relu(relu1, [5, 5, 32, 32], [32])

最后在image_filters这个作用域重复使用第一张图片输入时创建的变量,调用函数reuse_variables(),代码如下:

with tf.variable_scope("image_filters") as scope:
  result1 = my_image_filter(image1)
  scope.reuse_variables()
  result2 = my_image_filter(image2)

tf.get_variable()工作机制

tf.get_variable()工作机制是这样的:

当tf.get_variable_scope().reuse == False,调用该函数会创建新的变量

with tf.variable_scope("foo"):
  v = tf.get_variable("v", [1])
assert v.name == "foo/v:0"

当tf.get_variable_scope().reuse == True,调用该函数会重用已经创建的变量

with tf.variable_scope("foo"):
  v = tf.get_variable("v", [1])
with tf.variable_scope("foo", reuse=True):
  v1 = tf.get_variable("v", [1])
assert v1 is v

变量都是通过作用域/变量名来标识,后面会看到作用域可以像文件路径一样嵌套。

tf.variable_scope理解

tf.variable_scope()用来指定变量的作用域,作为变量名的前缀,支持嵌套,如下:

with tf.variable_scope("foo"):
  with tf.variable_scope("bar"):
    v = tf.get_variable("v", [1])
assert v.name == "foo/bar/v:0"

当前环境的作用域可以通过函数tf.get_variable_scope()获取,并且reuse标志可以通过调用reuse_variables()设置为True,这个非常有用,如下

with tf.variable_scope("foo"):
  v = tf.get_variable("v", [1])
  tf.get_variable_scope().reuse_variables()
  v1 = tf.get_variable("v", [1])
assert v1 is v

作用域中的resuse默认是False,调用函数reuse_variables()可设置为True,一旦设置为True,就不能返回到False,并且该作用域的子空间reuse都是True。如果不想重用变量,那么可以退回到上层作用域,相当于exit当前作用域,如

with tf.variable_scope("root"):
  # At start, the scope is not reusing.
  assert tf.get_variable_scope().reuse == False
  with tf.variable_scope("foo"):
    # Opened a sub-scope, still not reusing.
    assert tf.get_variable_scope().reuse == False
  with tf.variable_scope("foo", reuse=True):
    # Explicitly opened a reusing scope.
    assert tf.get_variable_scope().reuse == True
    with tf.variable_scope("bar"):
      # Now sub-scope inherits the reuse flag.
      assert tf.get_variable_scope().reuse == True
  # Exited the reusing scope, back to a non-reusing one.
  assert tf.get_variable_scope().reuse == False

一个作用域可以作为另一个新的作用域的参数,如:

with tf.variable_scope("foo") as foo_scope:
  v = tf.get_variable("v", [1])
with tf.variable_scope(foo_scope):
  w = tf.get_variable("w", [1])
with tf.variable_scope(foo_scope, reuse=True):
  v1 = tf.get_variable("v", [1])
  w1 = tf.get_variable("w", [1])
assert v1 is v
assert w1 is w

不管作用域如何嵌套,当使用with tf.variable_scope()打开一个已经存在的作用域时,就会跳转到这个作用域。

with tf.variable_scope("foo") as foo_scope:
  assert foo_scope.name == "foo"
with tf.variable_scope("bar"):
  with tf.variable_scope("baz") as other_scope:
    assert other_scope.name == "bar/baz"
    with tf.variable_scope(foo_scope) as foo_scope2:
      assert foo_scope2.name == "foo" # Not changed.

variable scope的Initializers可以创递给子空间和tf.get_variable()函数,除非中间有函数改变,否则不变。

with tf.variable_scope("foo", initializer=tf.constant_initializer(0.4)):
  v = tf.get_variable("v", [1])
  assert v.eval() == 0.4 # Default initializer as set above.
  w = tf.get_variable("w", [1], initializer=tf.constant_initializer(0.3)):
  assert w.eval() == 0.3 # Specific initializer overrides the default.
  with tf.variable_scope("bar"):
    v = tf.get_variable("v", [1])
    assert v.eval() == 0.4 # Inherited default initializer.
  with tf.variable_scope("baz", initializer=tf.constant_initializer(0.2)):
    v = tf.get_variable("v", [1])
    assert v.eval() == 0.2 # Changed default initializer.

算子(ops)会受变量作用域(variable scope)影响,相当于隐式地打开了同名的名称作用域(name scope),如+这个算子的名称为foo/add

with tf.variable_scope("foo"):
  x = 1.0 + tf.get_variable("v", [1])
assert x.op.name == "foo/add"

除了变量作用域(variable scope),还可以显式打开名称作用域(name scope),名称作用域仅仅影响算子的名称,不影响变量的名称。另外如果tf.variable_scope()传入字符参数,创建变量作用域的同时会隐式创建同名的名称作用域。如下面的例子,变量v的作用域是foo,而算子x的算子变为foo/bar,因为有隐式创建名称作用域foo

with tf.variable_scope("foo"):
  with tf.name_scope("bar"):
    v = tf.get_variable("v", [1])
    x = 1.0 + v
assert v.name == "foo/v:0"
assert x.op.name == "foo/bar/add"

注意: 如果tf.variable_scope()传入的不是字符串而是scope对象,则不会隐式创建同名的名称作用域。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python 获取et和excel的版本号
Apr 09 Python
Python中处理字符串之islower()方法的使用简介
May 19 Python
深入理解python中的闭包和装饰器
Jun 12 Python
python2.7的编码问题与解决方法
Oct 04 Python
Python 的类、继承和多态详解
Jul 16 Python
完美解决安装完tensorflow后pip无法使用的问题
Jun 11 Python
Python交互环境下实现输入代码
Jun 22 Python
python 基于TCP协议的套接字编程详解
Jun 29 Python
python django model联合主键的例子
Aug 06 Python
在python中对于bool布尔值的取反操作
Dec 11 Python
matplotlib实现数据实时刷新的示例代码
Jan 05 Python
python如何读取和存储dict()与.json格式文件
Jun 25 Python
python numpy数组复制使用实例解析
Jan 10 #Python
关于Pytorch的MNIST数据集的预处理详解
Jan 10 #Python
详解pycharm连接不上mysql数据库的解决办法
Jan 10 #Python
pycharm双击无响应(打不开问题解决办法)
Jan 10 #Python
python ubplot使用方法解析
Jan 10 #Python
Pytorch使用MNIST数据集实现基础GAN和DCGAN详解
Jan 10 #Python
Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式
Jan 10 #Python
You might like
Yii+MYSQL锁表防止并发情况下重复数据的方法
2016/07/14 PHP
[原创]PHP获取数组表示的路径方法分析【数组转字符串】
2017/09/01 PHP
[原创]php token使用与验证示例【测试可用】
2017/08/30 PHP
php删除二维数组中的重复值方法
2018/03/12 PHP
在laravel中实现事务回滚的方法
2019/10/10 PHP
在jQuery中 常用的选择器介绍
2013/04/16 Javascript
js禁止回车提交表单的示例代码
2013/12/23 Javascript
网页运行时提示对象不支持abigimage属性或方法
2014/08/10 Javascript
jQuery中[attribute*=value]选择器用法实例
2014/12/31 Javascript
JavaScript实现Java中Map容器的方法
2016/10/09 Javascript
ASP.NET jquery ajax传递参数的实例
2016/11/02 Javascript
js操作浏览器的参数方法
2017/01/21 Javascript
jQuery EasyUI Draggable拖动组件
2017/03/01 Javascript
简单谈谈原生js的math对象
2017/06/27 Javascript
详解基于 Nuxt 的 Vue.js 服务端渲染实践
2017/10/24 Javascript
vue 自定义全局方法,在组件里面的使用介绍
2018/02/28 Javascript
vue单页面在微信下只能分享落地页的解决方案
2019/04/15 Javascript
ES6 Promise对象的含义和基本用法分析
2019/06/14 Javascript
npm的lock机制解析
2019/06/20 Javascript
微信小程序实现动态列表项的顺序加载动画
2019/07/25 Javascript
Angular8基础应用之表单及其验证
2019/08/11 Javascript
Django 使用logging打印日志的实例
2018/04/28 Python
Python下调用Linux的Shell命令的方法
2018/06/12 Python
python 调用钉钉机器人的方法
2019/02/20 Python
python 处理微信对账单数据的实例代码
2019/07/19 Python
详解有关PyCharm安装库失败的问题的解决方法
2020/02/02 Python
自定义Django_rest_framework_jwt登陆错误返回的解决
2020/10/18 Python
python实现简单文件读写函数
2021/02/25 Python
html svg生成环形进度条的实现方法
2019/09/23 HTML / CSS
高中校园广播稿
2014/01/11 职场文书
旷课检讨书2000字
2014/01/14 职场文书
网上开店必备创业计划书
2014/01/26 职场文书
教师党员自我剖析材料
2014/09/29 职场文书
上级领导检查欢迎词
2015/09/30 职场文书
nginx限制并发连接请求数的方法
2021/04/01 Servers
分析SQL窗口函数之排名窗口函数
2022/04/21 Oracle