Posted in Python onAugust 20, 2018
查询操作和性能优化
1.基本操作
增
models.Tb1.objects.create(c1='xx', c2='oo') 增加一条数据,可以接受字典类型数据 **kwargs obj = models.Tb1(c1='xx', c2='oo') obj.save()
查
models.Tb1.objects.get(id=123) # 获取单条数据,不存在则报错(不建议) models.Tb1.objects.all() # 获取全部 models.Tb1.objects.filter(name='seven') # 获取指定条件的数据 models.Tb1.objects.exclude(name='seven') # 获取指定条件的数据
删
models.Tb1.objects.filter(name='seven').delete() # 删除指定条件的数据
改
models.Tb1.objects.filter(name='seven').update(gender='0') # 将指定条件的数据更新,均支持 **kwargs obj = models.Tb1.objects.get(id=1) obj.c1 = '111' obj.save() # 修改单条数据
2.Foreign key的使用原因
- 约束
- 节省硬盘
但是多表查询会降低速度,大型程序反而不使用外键,而是用单表(约束的时候,通过代码判断)
extra
extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None) Entry.objects.extra(select={'new_id': "select col from sometable where othercol > %s"}, select_params=(1,)) Entry.objects.extra(where=['headline=%s'], params=['Lennon']) Entry.objects.extra(where=["foo='a' OR bar = 'a'", "baz = 'a'"]) Entry.objects.extra(select={'new_id': "select id from tb where id > %s"}, select_params=(1,), order_by=['-nid'])
F查询
from django.db.models import F models.Tb1.objects.update(num=F('num')+1)
Q查询
方式一:
Q(nid__gt=10) Q(nid=8) | Q(nid__gt=10) Q(Q(nid=8) | Q(nid__gt=10)) & Q(caption='root')
方式二:
con = Q() q1 = Q() q1.connector = 'OR' q1.children.append(('id', 1)) q1.children.append(('id', 10)) q1.children.append(('id', 9)) q2 = Q() q2.connector = 'OR' q2.children.append(('c1', 1)) q2.children.append(('c1', 10)) q2.children.append(('c1', 9)) con.add(q1, 'AND') con.add(q2, 'AND') models.Tb1.objects.filter(con)
exclude(self, *args, **kwargs)
# 条件查询 # 条件可以是:参数,字典,Q
select_related(self, *fields)
性能相关:表之间进行join连表操作,一次性获取关联的数据。
model.tb.objects.all().select_related() model.tb.objects.all().select_related('外键字段') model.tb.objects.all().select_related('外键字段__外键字段')
prefetch_related(self, *lookups)
性能相关:多表连表操作时速度会慢,使用其执行多次SQL查询 在内存中做关联,而不会再做连表查询
# 第一次 获取所有用户表 # 第二次 获取用户类型表where id in (用户表中的查到的所有用户ID) models.UserInfo.objects.prefetch_related('外键字段')
annotate(self, *args, **kwargs)
# 用于实现聚合group by查询 from django.db.models import Count, Avg, Max, Min, Sum v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id')) # SELECT u_id, COUNT(ui) AS `uid` FROM UserInfo GROUP BY u_id v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id')).filter(uid__gt=1) # SELECT u_id, COUNT(ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1 v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id',distinct=True)).filter(uid__gt=1) # SELECT u_id, COUNT( DISTINCT ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1
extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None)
# 构造额外的查询条件或者映射,如:子查询 Entry.objects.extra(select={'new_id': "select col from sometable where othercol > %s"}, select_params=(1,)) Entry.objects.extra(where=['headline=%s'], params=['Lennon']) Entry.objects.extra(where=["foo='a' OR bar = 'a'", "baz = 'a'"]) Entry.objects.extra(select={'new_id': "select id from tb where id > %s"}, select_params=(1,), order_by=['-nid'])
reverse(self):
# 倒序 models.UserInfo.objects.all().order_by('-nid').reverse() # 注:如果存在order_by,reverse则是倒序,如果多个排序则一一倒序
下面两个 取到的是对象,并且注意 取到的对象可以 获取其他字段(这样会再去查找该字段降低性能
defer(self, *fields):
models.UserInfo.objects.defer('username','id') 或 models.UserInfo.objects.filter(...).defer('username','id') # 映射中排除某列数据
only(self, *fields):
# 仅取某个表中的数据 models.UserInfo.objects.only('username','id') 或 models.UserInfo.objects.filter(...).only('username','id')
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。
django_orm查询性能优化方法
- Author -
dragonliu声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@