手把手教你使用TensorFlow2实现RNN


Posted in Python onJuly 15, 2021
目录
  • 概述
  • 权重共享
  • 计算过程:
  • 案例
    • 数据集
    • RNN 层
    • 获取数据
  • 完整代码

 

概述

RNN (Recurrent Netural Network) 是用于处理序列数据的神经网络. 所谓序列数据, 即前面的输入和后面的输入有一定的联系.

手把手教你使用TensorFlow2实现RNN

 

权重共享

传统神经网络:

手把手教你使用TensorFlow2实现RNN

RNN:

手把手教你使用TensorFlow2实现RNN

RNN 的权重共享和 CNN 的权重共享类似, 不同时刻共享一个权重, 大大减少了参数数量.

 

计算过程:

手把手教你使用TensorFlow2实现RNN

计算状态 (State)

手把手教你使用TensorFlow2实现RNN

计算输出:

手把手教你使用TensorFlow2实现RNN

 

案例

 

数据集

IBIM 数据集包含了来自互联网的 50000 条关于电影的评论, 分为正面评价和负面评价.

 

RNN 层

class RNN(tf.keras.Model):

    def __init__(self, units):
        super(RNN, self).__init__()

        # 初始化 [b, 64] (b 表示 batch_size)
        self.state0 = [tf.zeros([batch_size, units])]
        self.state1 = [tf.zeros([batch_size, units])]

        # [b, 80] => [b, 80, 100]
        self.embedding = tf.keras.layers.Embedding(total_words, embedding_len, input_length=max_review_len)

        self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)
        self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)

        # [b, 80, 100] => [b, 64] => [b, 1]
        self.out_layer = tf.keras.layers.Dense(1)

    def call(self, inputs, training=None):
        """

        :param inputs: [b, 80]
        :param training:
        :return:
        """

        state0 = self.state0
        state1 = self.state1

        x = self.embedding(inputs)

        for word in tf.unstack(x, axis=1):
            out0, state0 = self.rnn_cell0(word, state0, training=training)
            out1, state1 = self.rnn_cell1(out0, state1, training=training)

        # [b, 64] -> [b, 1]
        x = self.out_layer(out1)

        prob = tf.sigmoid(x)

        return prob

 

获取数据

def get_data():
    # 获取数据
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words)

    # 更改句子长度
    X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len)
    X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len)

    # 调试输出
    print(X_train.shape, y_train.shape)  # (25000, 80) (25000,)
    print(X_test.shape, y_test.shape)  # (25000, 80) (25000,)

    # 分割训练集
    train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train))
    train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True)

    # 分割测试集
    test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test))
    test_db = test_db.batch(batch_size, drop_remainder=True)

    return train_db, test_db

 

完整代码

import tensorflow as tf


class RNN(tf.keras.Model):

    def __init__(self, units):
        super(RNN, self).__init__()

        # 初始化 [b, 64]
        self.state0 = [tf.zeros([batch_size, units])]
        self.state1 = [tf.zeros([batch_size, units])]

        # [b, 80] => [b, 80, 100]
        self.embedding = tf.keras.layers.Embedding(total_words, embedding_len, input_length=max_review_len)

        self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)
        self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)

        # [b, 80, 100] => [b, 64] => [b, 1]
        self.out_layer = tf.keras.layers.Dense(1)

    def call(self, inputs, training=None):
        """

        :param inputs: [b, 80]
        :param training:
        :return:
        """

        state0 = self.state0
        state1 = self.state1

        x = self.embedding(inputs)

        for word in tf.unstack(x, axis=1):
            out0, state0 = self.rnn_cell0(word, state0, training=training)
            out1, state1 = self.rnn_cell1(out0, state1, training=training)

        # [b, 64] -> [b, 1]
        x = self.out_layer(out1)

        prob = tf.sigmoid(x)

        return prob


# 超参数
total_words = 10000  # 文字数量
max_review_len = 80  # 句子长度
embedding_len = 100  # 词维度
batch_size = 1024  # 一次训练的样本数目
learning_rate = 0.0001  # 学习率
iteration_num = 20  # 迭代次数
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)  # 优化器
loss = tf.losses.BinaryCrossentropy(from_logits=True)  # 损失
model = RNN(64)

# 调试输出summary
model.build(input_shape=[None, 64])
print(model.summary())

# 组合
model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"])


def get_data():
    # 获取数据
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words)

    # 更改句子长度
    X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len)
    X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len)

    # 调试输出
    print(X_train.shape, y_train.shape)  # (25000, 80) (25000,)
    print(X_test.shape, y_test.shape)  # (25000, 80) (25000,)

    # 分割训练集
    train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train))
    train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True)

    # 分割测试集
    test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test))
    test_db = test_db.batch(batch_size, drop_remainder=True)

    return train_db, test_db


if __name__ == "__main__":
    # 获取分割的数据集
    train_db, test_db = get_data()

    # 拟合
    model.fit(train_db, epochs=iteration_num, validation_data=test_db, validation_freq=1)

输出结果:

Model: "rnn"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding (Embedding) multiple 1000000
_________________________________________________________________
simple_rnn_cell (SimpleRNNCe multiple 10560
_________________________________________________________________
simple_rnn_cell_1 (SimpleRNN multiple 8256
_________________________________________________________________
dense (Dense) multiple 65
=================================================================
Total params: 1,018,881
Trainable params: 1,018,881
Non-trainable params: 0
_________________________________________________________________
None

(25000, 80) (25000,)
(25000, 80) (25000,)
Epoch 1/20
2021-07-10 17:59:45.150639: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
24/24 [==============================] - 12s 294ms/step - loss: 0.7113 - accuracy: 0.5033 - val_loss: 0.6968 - val_accuracy: 0.4994
Epoch 2/20
24/24 [==============================] - 7s 292ms/step - loss: 0.6951 - accuracy: 0.5005 - val_loss: 0.6939 - val_accuracy: 0.4994
Epoch 3/20
24/24 [==============================] - 7s 297ms/step - loss: 0.6937 - accuracy: 0.5000 - val_loss: 0.6935 - val_accuracy: 0.4994
Epoch 4/20
24/24 [==============================] - 8s 316ms/step - loss: 0.6934 - accuracy: 0.5001 - val_loss: 0.6933 - val_accuracy: 0.4994
Epoch 5/20
24/24 [==============================] - 7s 301ms/step - loss: 0.6934 - accuracy: 0.4996 - val_loss: 0.6933 - val_accuracy: 0.4994
Epoch 6/20
24/24 [==============================] - 8s 334ms/step - loss: 0.6932 - accuracy: 0.5000 - val_loss: 0.6932 - val_accuracy: 0.4994
Epoch 7/20
24/24 [==============================] - 10s 398ms/step - loss: 0.6931 - accuracy: 0.5006 - val_loss: 0.6932 - val_accuracy: 0.4994
Epoch 8/20
24/24 [==============================] - 9s 382ms/step - loss: 0.6930 - accuracy: 0.5006 - val_loss: 0.6931 - val_accuracy: 0.4994
Epoch 9/20
24/24 [==============================] - 8s 322ms/step - loss: 0.6924 - accuracy: 0.4995 - val_loss: 0.6913 - val_accuracy: 0.5240
Epoch 10/20
24/24 [==============================] - 8s 321ms/step - loss: 0.6812 - accuracy: 0.5501 - val_loss: 0.6655 - val_accuracy: 0.5767
Epoch 11/20
24/24 [==============================] - 8s 318ms/step - loss: 0.6381 - accuracy: 0.6896 - val_loss: 0.6235 - val_accuracy: 0.7399
Epoch 12/20
24/24 [==============================] - 8s 323ms/step - loss: 0.6088 - accuracy: 0.7655 - val_loss: 0.6110 - val_accuracy: 0.7533
Epoch 13/20
24/24 [==============================] - 8s 321ms/step - loss: 0.5949 - accuracy: 0.7956 - val_loss: 0.6111 - val_accuracy: 0.7878
Epoch 14/20
24/24 [==============================] - 8s 324ms/step - loss: 0.5859 - accuracy: 0.8142 - val_loss: 0.5993 - val_accuracy: 0.7904
Epoch 15/20
24/24 [==============================] - 8s 330ms/step - loss: 0.5791 - accuracy: 0.8318 - val_loss: 0.5961 - val_accuracy: 0.7907
Epoch 16/20
24/24 [==============================] - 8s 340ms/step - loss: 0.5739 - accuracy: 0.8421 - val_loss: 0.5942 - val_accuracy: 0.7961
Epoch 17/20
24/24 [==============================] - 9s 378ms/step - loss: 0.5701 - accuracy: 0.8497 - val_loss: 0.5933 - val_accuracy: 0.8014
Epoch 18/20
24/24 [==============================] - 9s 361ms/step - loss: 0.5665 - accuracy: 0.8589 - val_loss: 0.5958 - val_accuracy: 0.8082
Epoch 19/20
24/24 [==============================] - 8s 353ms/step - loss: 0.5630 - accuracy: 0.8681 - val_loss: 0.5931 - val_accuracy: 0.7966
Epoch 20/20
24/24 [==============================] - 8s 314ms/step - loss: 0.5614 - accuracy: 0.8702 - val_loss: 0.5925 - val_accuracy: 0.7959

Process finished with exit code 0

到此这篇关于手把手教你使用TensorFlow2实现RNN的文章就介绍到这了,更多相关TensorFlow2实现RNN内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python实现支持目录FTP上传下载文件的方法
Jun 03 Python
Python+django实现文件上传
Jan 17 Python
Python类的继承和多态代码详解
Dec 27 Python
python3中os.path模块下常用的用法总结【推荐】
Sep 16 Python
face++与python实现人脸识别签到(考勤)功能
Aug 28 Python
Python 过滤错误log并导出的实例
Dec 26 Python
python处理RSTP视频流过程解析
Jan 11 Python
python有序查找算法 二分法实例解析
Feb 18 Python
python GUI库图形界面开发之PyQt5树形结构控件QTreeWidget详细使用方法与实例
Mar 02 Python
手把手教你如何用Pycharm2020.1.1配置远程连接的详细步骤
Aug 07 Python
python 实现IP子网计算
Feb 18 Python
如何用六步教会你使用python爬虫爬取数据
Apr 06 Python
一篇文章弄懂Python关键字、标识符和变量
python开发飞机大战游戏
详解Python中下划线的5种含义
Python操作CSV格式文件的方法大全
openstack中的rpc远程调用的方法
Python实现查询剪贴板自动匹配信息的思路详解
如何利用Python实现一个论文降重工具
You might like
PHP编码转换
2012/11/05 PHP
又一个PHP实现的冒泡排序算法分享
2014/08/21 PHP
php实现用于删除整个目录的递归函数
2015/03/16 PHP
php微信公众平台开发类实例
2015/04/01 PHP
详解PHP对数组的定义以及数组的创建方法
2015/11/27 PHP
php抽奖概率算法(刮刮卡,大转盘)
2020/04/17 PHP
读jQuery之十四 (触发事件核心方法)
2011/08/23 Javascript
基于KMP算法JavaScript的实现方法分析
2013/05/03 Javascript
防止jQuery ajax Load使用缓存的方法小结
2014/02/22 Javascript
JavaScript实现快速排序的方法
2015/07/31 Javascript
JS在浏览器中解析Base64编码图像
2017/02/09 Javascript
详解Vue 动态添加模板的几种方法
2017/04/25 Javascript
详解vue路由篇(动态路由、路由嵌套)
2019/01/27 Javascript
利用d3.js实现蜂巢图表带动画效果
2019/09/03 Javascript
vuex根据不同的用户权限展示不同的路由列表功能
2019/09/20 Javascript
pyv8学习python和javascript变量进行交互
2013/12/04 Python
Python编写百度贴吧的简单爬虫
2015/04/02 Python
Python开发之快速搭建自动回复微信公众号功能
2016/04/22 Python
python制作小说爬虫实录
2017/08/14 Python
python占位符输入方式实例
2019/05/27 Python
pymysql的简单封装代码实例
2020/01/08 Python
tensorboard实现同时显示训练曲线和测试曲线
2020/01/21 Python
pytorch中的inference使用实例
2020/02/20 Python
python如何更新包
2020/06/11 Python
python 通过pip freeze、dowload打离线包及自动安装的过程详解(适用于保密的离线环境
2020/12/14 Python
世界最大的私人旅行指南出版商:孤独星球
2016/08/23 全球购物
旅游与酒店管理的自我评价分享
2013/11/03 职场文书
大学班级干部的自我评价分享
2014/02/10 职场文书
我为自己代言广告词
2014/03/18 职场文书
六查六看心得体会
2014/10/14 职场文书
酒店客房服务员岗位职责
2015/04/09 职场文书
2015公司年度工作总结
2015/05/14 职场文书
学校安全管理制度
2015/08/06 职场文书
Java 实战项目之家居购物商城系统详解流程
2021/11/11 Java/Android
正则表达式拆分url实例代码
2022/02/24 Java/Android
kubernetes集群搭建Zabbix监控平台的详细过程
2022/07/07 Servers