手把手教你使用TensorFlow2实现RNN


Posted in Python onJuly 15, 2021
目录
  • 概述
  • 权重共享
  • 计算过程:
  • 案例
    • 数据集
    • RNN 层
    • 获取数据
  • 完整代码

 

概述

RNN (Recurrent Netural Network) 是用于处理序列数据的神经网络. 所谓序列数据, 即前面的输入和后面的输入有一定的联系.

手把手教你使用TensorFlow2实现RNN

 

权重共享

传统神经网络:

手把手教你使用TensorFlow2实现RNN

RNN:

手把手教你使用TensorFlow2实现RNN

RNN 的权重共享和 CNN 的权重共享类似, 不同时刻共享一个权重, 大大减少了参数数量.

 

计算过程:

手把手教你使用TensorFlow2实现RNN

计算状态 (State)

手把手教你使用TensorFlow2实现RNN

计算输出:

手把手教你使用TensorFlow2实现RNN

 

案例

 

数据集

IBIM 数据集包含了来自互联网的 50000 条关于电影的评论, 分为正面评价和负面评价.

 

RNN 层

class RNN(tf.keras.Model):

    def __init__(self, units):
        super(RNN, self).__init__()

        # 初始化 [b, 64] (b 表示 batch_size)
        self.state0 = [tf.zeros([batch_size, units])]
        self.state1 = [tf.zeros([batch_size, units])]

        # [b, 80] => [b, 80, 100]
        self.embedding = tf.keras.layers.Embedding(total_words, embedding_len, input_length=max_review_len)

        self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)
        self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)

        # [b, 80, 100] => [b, 64] => [b, 1]
        self.out_layer = tf.keras.layers.Dense(1)

    def call(self, inputs, training=None):
        """

        :param inputs: [b, 80]
        :param training:
        :return:
        """

        state0 = self.state0
        state1 = self.state1

        x = self.embedding(inputs)

        for word in tf.unstack(x, axis=1):
            out0, state0 = self.rnn_cell0(word, state0, training=training)
            out1, state1 = self.rnn_cell1(out0, state1, training=training)

        # [b, 64] -> [b, 1]
        x = self.out_layer(out1)

        prob = tf.sigmoid(x)

        return prob

 

获取数据

def get_data():
    # 获取数据
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words)

    # 更改句子长度
    X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len)
    X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len)

    # 调试输出
    print(X_train.shape, y_train.shape)  # (25000, 80) (25000,)
    print(X_test.shape, y_test.shape)  # (25000, 80) (25000,)

    # 分割训练集
    train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train))
    train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True)

    # 分割测试集
    test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test))
    test_db = test_db.batch(batch_size, drop_remainder=True)

    return train_db, test_db

 

完整代码

import tensorflow as tf


class RNN(tf.keras.Model):

    def __init__(self, units):
        super(RNN, self).__init__()

        # 初始化 [b, 64]
        self.state0 = [tf.zeros([batch_size, units])]
        self.state1 = [tf.zeros([batch_size, units])]

        # [b, 80] => [b, 80, 100]
        self.embedding = tf.keras.layers.Embedding(total_words, embedding_len, input_length=max_review_len)

        self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)
        self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)

        # [b, 80, 100] => [b, 64] => [b, 1]
        self.out_layer = tf.keras.layers.Dense(1)

    def call(self, inputs, training=None):
        """

        :param inputs: [b, 80]
        :param training:
        :return:
        """

        state0 = self.state0
        state1 = self.state1

        x = self.embedding(inputs)

        for word in tf.unstack(x, axis=1):
            out0, state0 = self.rnn_cell0(word, state0, training=training)
            out1, state1 = self.rnn_cell1(out0, state1, training=training)

        # [b, 64] -> [b, 1]
        x = self.out_layer(out1)

        prob = tf.sigmoid(x)

        return prob


# 超参数
total_words = 10000  # 文字数量
max_review_len = 80  # 句子长度
embedding_len = 100  # 词维度
batch_size = 1024  # 一次训练的样本数目
learning_rate = 0.0001  # 学习率
iteration_num = 20  # 迭代次数
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)  # 优化器
loss = tf.losses.BinaryCrossentropy(from_logits=True)  # 损失
model = RNN(64)

# 调试输出summary
model.build(input_shape=[None, 64])
print(model.summary())

# 组合
model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"])


def get_data():
    # 获取数据
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words)

    # 更改句子长度
    X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len)
    X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len)

    # 调试输出
    print(X_train.shape, y_train.shape)  # (25000, 80) (25000,)
    print(X_test.shape, y_test.shape)  # (25000, 80) (25000,)

    # 分割训练集
    train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train))
    train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True)

    # 分割测试集
    test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test))
    test_db = test_db.batch(batch_size, drop_remainder=True)

    return train_db, test_db


if __name__ == "__main__":
    # 获取分割的数据集
    train_db, test_db = get_data()

    # 拟合
    model.fit(train_db, epochs=iteration_num, validation_data=test_db, validation_freq=1)

输出结果:

Model: "rnn"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding (Embedding) multiple 1000000
_________________________________________________________________
simple_rnn_cell (SimpleRNNCe multiple 10560
_________________________________________________________________
simple_rnn_cell_1 (SimpleRNN multiple 8256
_________________________________________________________________
dense (Dense) multiple 65
=================================================================
Total params: 1,018,881
Trainable params: 1,018,881
Non-trainable params: 0
_________________________________________________________________
None

(25000, 80) (25000,)
(25000, 80) (25000,)
Epoch 1/20
2021-07-10 17:59:45.150639: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
24/24 [==============================] - 12s 294ms/step - loss: 0.7113 - accuracy: 0.5033 - val_loss: 0.6968 - val_accuracy: 0.4994
Epoch 2/20
24/24 [==============================] - 7s 292ms/step - loss: 0.6951 - accuracy: 0.5005 - val_loss: 0.6939 - val_accuracy: 0.4994
Epoch 3/20
24/24 [==============================] - 7s 297ms/step - loss: 0.6937 - accuracy: 0.5000 - val_loss: 0.6935 - val_accuracy: 0.4994
Epoch 4/20
24/24 [==============================] - 8s 316ms/step - loss: 0.6934 - accuracy: 0.5001 - val_loss: 0.6933 - val_accuracy: 0.4994
Epoch 5/20
24/24 [==============================] - 7s 301ms/step - loss: 0.6934 - accuracy: 0.4996 - val_loss: 0.6933 - val_accuracy: 0.4994
Epoch 6/20
24/24 [==============================] - 8s 334ms/step - loss: 0.6932 - accuracy: 0.5000 - val_loss: 0.6932 - val_accuracy: 0.4994
Epoch 7/20
24/24 [==============================] - 10s 398ms/step - loss: 0.6931 - accuracy: 0.5006 - val_loss: 0.6932 - val_accuracy: 0.4994
Epoch 8/20
24/24 [==============================] - 9s 382ms/step - loss: 0.6930 - accuracy: 0.5006 - val_loss: 0.6931 - val_accuracy: 0.4994
Epoch 9/20
24/24 [==============================] - 8s 322ms/step - loss: 0.6924 - accuracy: 0.4995 - val_loss: 0.6913 - val_accuracy: 0.5240
Epoch 10/20
24/24 [==============================] - 8s 321ms/step - loss: 0.6812 - accuracy: 0.5501 - val_loss: 0.6655 - val_accuracy: 0.5767
Epoch 11/20
24/24 [==============================] - 8s 318ms/step - loss: 0.6381 - accuracy: 0.6896 - val_loss: 0.6235 - val_accuracy: 0.7399
Epoch 12/20
24/24 [==============================] - 8s 323ms/step - loss: 0.6088 - accuracy: 0.7655 - val_loss: 0.6110 - val_accuracy: 0.7533
Epoch 13/20
24/24 [==============================] - 8s 321ms/step - loss: 0.5949 - accuracy: 0.7956 - val_loss: 0.6111 - val_accuracy: 0.7878
Epoch 14/20
24/24 [==============================] - 8s 324ms/step - loss: 0.5859 - accuracy: 0.8142 - val_loss: 0.5993 - val_accuracy: 0.7904
Epoch 15/20
24/24 [==============================] - 8s 330ms/step - loss: 0.5791 - accuracy: 0.8318 - val_loss: 0.5961 - val_accuracy: 0.7907
Epoch 16/20
24/24 [==============================] - 8s 340ms/step - loss: 0.5739 - accuracy: 0.8421 - val_loss: 0.5942 - val_accuracy: 0.7961
Epoch 17/20
24/24 [==============================] - 9s 378ms/step - loss: 0.5701 - accuracy: 0.8497 - val_loss: 0.5933 - val_accuracy: 0.8014
Epoch 18/20
24/24 [==============================] - 9s 361ms/step - loss: 0.5665 - accuracy: 0.8589 - val_loss: 0.5958 - val_accuracy: 0.8082
Epoch 19/20
24/24 [==============================] - 8s 353ms/step - loss: 0.5630 - accuracy: 0.8681 - val_loss: 0.5931 - val_accuracy: 0.7966
Epoch 20/20
24/24 [==============================] - 8s 314ms/step - loss: 0.5614 - accuracy: 0.8702 - val_loss: 0.5925 - val_accuracy: 0.7959

Process finished with exit code 0

到此这篇关于手把手教你使用TensorFlow2实现RNN的文章就介绍到这了,更多相关TensorFlow2实现RNN内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python使用win32com在百度空间插入html元素示例
Feb 20 Python
python中的文件打开与关闭操作命令介绍
Apr 26 Python
快速解决pandas.read_csv()乱码的问题
Jun 15 Python
使用python3实现操作串口详解
Jan 01 Python
对python使用telnet实现弱密码登录的方法详解
Jan 26 Python
详解Python Qt的窗体开发的基本操作
Jul 14 Python
Ubuntu下Python+Flask分分钟搭建自己的服务器教程
Nov 19 Python
python实现批量命名照片
Jun 18 Python
Python通过递归函数输出嵌套列表元素
Oct 15 Python
详解python中的三种命令行模块(sys.argv,argparse,click)
Dec 15 Python
pytorch 两个GPU同时训练的解决方案
Jun 01 Python
Appium中scroll和drag_and_drop根据元素位置滑动
Feb 15 Python
一篇文章弄懂Python关键字、标识符和变量
python开发飞机大战游戏
详解Python中下划线的5种含义
Python操作CSV格式文件的方法大全
openstack中的rpc远程调用的方法
Python实现查询剪贴板自动匹配信息的思路详解
如何利用Python实现一个论文降重工具
You might like
php5 pdo新改动加载注意事项
2008/09/11 PHP
PHP对接微信公众平台消息接口开发流程教程
2014/03/25 PHP
PHP数组操作类实例
2015/07/11 PHP
php图像处理类实例
2015/07/28 PHP
php实现等比例不失真缩放上传图片的方法
2016/11/14 PHP
详谈symfony window下的安装 安装时候出现的问题以及解决方法
2017/09/28 PHP
IE6下CSS图片缓存问题解决方法
2010/12/09 Javascript
浏览器加载、渲染和解析过程黑箱简析
2012/11/29 Javascript
如何获取JQUERY AJAX返回的JSON结果集实现代码
2012/12/10 Javascript
javascript中apply和call方法的作用及区别说明
2014/02/14 Javascript
基于BootStrap实现局部刷新分页实例代码
2016/08/08 Javascript
Bootstrap实现带暂停功能的轮播组件(推荐)
2016/11/25 Javascript
RequireJS 依赖关系的实例(推荐)
2017/01/21 Javascript
ES6中的箭头函数实例详解
2017/04/06 Javascript
Vue2.0学习系列之项目上线的方法步骤(图文)
2018/09/25 Javascript
vue+element表格导出为Excel文件
2019/09/26 Javascript
微信小程序点击列表跳转到对应详情页过程解析
2019/09/26 Javascript
Python程序设计入门(1)基本语法简介
2014/06/13 Python
Python中functools模块函数解析
2017/03/12 Python
Pycharm远程调试openstack的方法
2017/11/21 Python
windows 下python+numpy安装实用教程
2017/12/23 Python
Django 跨域请求处理的示例代码
2018/05/02 Python
详解Python传入参数的几种方法
2019/05/16 Python
Django框架HttpResponse对象用法实例分析
2019/11/01 Python
Python3实现发送邮件和发送短信验证码功能
2020/01/07 Python
FC-Moto丹麦:欧洲最大的摩托车服装和头盔商店之一
2019/08/20 全球购物
Armor Lux法国官方网站:水手服装、成衣和内衣
2020/05/26 全球购物
爱心捐助倡议书
2014/05/19 职场文书
安全责任书模板
2014/07/22 职场文书
中国梦演讲稿5分钟
2014/08/19 职场文书
民族精神月活动总结
2014/08/28 职场文书
无房产证房屋转让协议书合同样本
2014/10/18 职场文书
党的群众路线教育实践活动心得体会(教师)
2014/10/31 职场文书
办公楼租房协议书范本
2014/11/25 职场文书
解决mysql的int型主键自增问题
2021/07/15 MySQL
Android Rxjava3 使用场景详解
2022/04/07 Java/Android