朴素贝叶斯分类算法原理与Python实现与使用方法案例


Posted in Python onJune 26, 2018

本文实例讲述了朴素贝叶斯分类算法原理与Python实现与使用方法。分享给大家供大家参考,具体如下:

朴素贝叶斯分类算法

1、朴素贝叶斯分类算法原理

1.1、概述

贝叶斯分类算法是一大类分类算法的总称

贝叶斯分类算法以样本可能属于某类的概率来作为分类依据

朴素贝叶斯分类算法是贝叶斯分类算法中最简单的一种

注:朴素的意思是条件概率独立性

P(A|x1x2x3x4)=p(A|x1)*p(A|x2)p(A|x3)p(A|x4)则为条件概率独立
P(xy|z)=p(xyz)/p(z)=p(xz)/p(z)*p(yz)/p(z)

1.2、算法思想

朴素贝叶斯的思想是这样的:

如果一个事物在一些属性条件发生的情况下,事物属于A的概率>属于B的概率,则判定事物属于A

通俗来说比如,你在街上看到一个黑人,我让你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?

在你的脑海中,有这么一个判断流程:

①、这个人的肤色是黑色 <特征>
②、黑色人种是非洲人的概率最高 <条件概率:黑色条件下是非洲人的概率>
③、没有其他辅助信息的情况下,最好的判断就是非洲人

这就是朴素贝叶斯的思想基础。

再扩展一下,假如在街上看到一个黑人讲英语,那我们是怎么去判断他来自于哪里?

提取特征:

肤色: 黑
语言: 英语

黑色人种来自非洲的概率: 80%
黑色人种来自于美国的概率:20%

讲英语的人来自于非洲的概率:10%
讲英语的人来自于美国的概率:90%

在我们的自然思维方式中,就会这样判断:

这个人来自非洲的概率:80% * 10% = 0.08
这个人来自美国的概率:20% * 90% =0.18

我们的判断结果就是:此人来自美国!

其蕴含的数学原理如下:

p(A|xy)=p(Axy)/p(xy)=p(Axy)/p(x)p(y)=p(A)/p(x)*p(A)/p(y)* p(xy)/p(xy)=p(A|x)p(A|y)

P(类别 | 特征)=P(特征 | 类别)*P(类别) / P(特征)

1.3、算法步骤

①、分解各类先验样本数据中的特征
②、计算各类数据中,各特征的条件概率
(比如:特征1出现的情况下,属于A类的概率p(A|特征1),属于B类的概率p(B|特征1),属于C类的概率p(C|特征1)......)
③、分解待分类数据中的特征(特征1、特征2、特征3、特征4......)
④、计算各特征的各条件概率的乘积,如下所示:
判断为A类的概率:p(A|特征1)*p(A|特征2)*p(A|特征3)*p(A|特征4).....
判断为B类的概率:p(B|特征1)*p(B|特征2)*p(B|特征3)*p(B|特征4).....
判断为C类的概率:p(C|特征1)*p(C|特征2)*p(C|特征3)*p(C|特征4).....
......
⑤、结果中的最大值就是该样本所属的类别

1.4、算法应用举例

大众点评、淘宝等电商上都会有大量的用户评论,比如:

1、衣服质量太差了!!!!颜色根本不纯!!! 0
2、我有一有种上当受骗的感觉!!!! 0
3、质量太差,衣服拿到手感觉像旧货!!! 0
4、上身漂亮,合身,很帅,给卖家点赞 1
5、穿上衣服帅呆了,给点一万个赞 1
6、我在他家买了三件衣服!!!!质量都很差! 0

其中1/2/3/6是差评,4/5是好评

现在需要使用朴素贝叶斯分类算法来自动分类其他的评论,比如:

a、这么差的衣服以后再也不买了
b、帅,有逼格
……

1.5、算法应用流程

①、分解出先验数据中的各特征
(即分词,比如“衣服”“质量太差”“差”“不纯”“帅”“漂亮”,“赞”……)
②、计算各类别(好评、差评)中,各特征的条件概率
(比如 p(“衣服”|差评)、p(“衣服”|好评)、p(“差”|好评) 、p(“差”|差评)……)
③、分解出待分类样本的各特征
(比如分解a: “差” “衣服” ……)
④、计算类别概率
P(好评) = p(好评|“差”) *p(好评|“衣服”)*……
P(差评) = p(差评|“差”) *p(差评|“衣服”)*……
⑤、显然P(差评)的结果值更大,因此a被判别为“差评”

1.6、朴素贝叶斯分类算法案例

大体计算方法:

P(好评 | 单词1,单词2,单词3) = P(单词1,单词2,单词3 | 好评) * P(好评) / P(单词1,单词2,单词3)

因为分母都相同,所以只用比较分子即可--->P(单词1,单词2,单词3 | 好评) P(好评)

每个单词之间都是相互独立的---->P(单词1 | 好评)P(单词2 | 好评)P(单词3 | 好评)*P(好评)

P(单词1 | 好评) = 单词1在样本好评中出现的总次数/样本好评句子中总的单词数

P(好评) = 样本好评的条数/样本的总条数

同理:

P(差评 | 单词1,单词2,单词3) = P(单词1,单词2,单词3 | 差评) * P(差评) / P(单词1,单词2,单词3)

因为分母都相同,所以只用比较分子即可--->P(单词1,单词2,单词3 | 差评) P(差评)

每个单词之间都是相互独立的---->P(单词1 | 差评)P(单词2 | 差评)P(单词3 | 差评)*P(差评)

2、 Python案例

#!/usr/bin/python
# coding=utf-8
from numpy import *
# 过滤网站的恶意留言 侮辱性:1   非侮辱性:0
# 创建一个实验样本
def loadDataSet():
  postingList = [['my','dog','has','flea','problems','help','please'],
          ['maybe','not','take','him','to','dog','park','stupid'],
          ['my','dalmation','is','so','cute','I','love','him'],
          ['stop','posting','stupid','worthless','garbage'],
          ['mr','licks','ate','my','steak','how','to','stop','him'],
          ['quit','buying','worthless','dog','food','stupid']]
  classVec = [0,1,0,1,0,1]
  return postingList, classVec
# 创建一个包含在所有文档中出现的不重复词的列表
def createVocabList(dataSet):
  vocabSet = set([])   # 创建一个空集
  for document in dataSet:
    vocabSet = vocabSet | set(document)  # 创建两个集合的并集
  return list(vocabSet)
# 将文档词条转换成词向量
def setOfWords2Vec(vocabList, inputSet):
  returnVec = [0]*len(vocabList)    # 创建一个其中所含元素都为0的向量
  for word in inputSet:
    if word in vocabList:
      # returnVec[vocabList.index(word)] = 1   # index函数在字符串里找到字符第一次出现的位置 词集模型
      returnVec[vocabList.index(word)] += 1   # 文档的词袋模型  每个单词可以出现多次
    else: print "the word: %s is not in my Vocabulary!" % word
  return returnVec
# 朴素贝叶斯分类器训练函数  从词向量计算概率
def trainNB0(trainMatrix, trainCategory):
  numTrainDocs = len(trainMatrix)
  numWords = len(trainMatrix[0])
  pAbusive = sum(trainCategory)/float(numTrainDocs)
  # p0Num = zeros(numWords); p1Num = zeros(numWords)
  # p0Denom = 0.0; p1Denom = 0.0
  p0Num = ones(numWords);  # 避免一个概率值为0,最后的乘积也为0
  p1Num = ones(numWords);  # 用来统计两类数据中,各词的词频
  p0Denom = 2.0; # 用于统计0类中的总数
  p1Denom = 2.0 # 用于统计1类中的总数
  for i in range(numTrainDocs):
    if trainCategory[i] == 1:
      p1Num += trainMatrix[i]
      p1Denom += sum(trainMatrix[i])
    else:
      p0Num += trainMatrix[i]
      p0Denom += sum(trainMatrix[i])
      # p1Vect = p1Num / p1Denom
      # p0Vect = p0Num / p0Denom
  p1Vect = log(p1Num / p1Denom)  # 在类1中,每个次的发生概率
  p0Vect = log(p0Num / p0Denom)   # 避免下溢出或者浮点数舍入导致的错误  下溢出是由太多很小的数相乘得到的
  return p0Vect, p1Vect, pAbusive
# 朴素贝叶斯分类器
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
  p1 = sum(vec2Classify*p1Vec) + log(pClass1)
  p0 = sum(vec2Classify*p0Vec) + log(1.0-pClass1)
  if p1 > p0:
    return 1
  else:
    return 0
def testingNB():
  listOPosts, listClasses = loadDataSet()
  myVocabList = createVocabList(listOPosts)
  trainMat = []
  for postinDoc in listOPosts:
    trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
  p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
  testEntry = ['love','my','dalmation']
  thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
  print testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb)
  testEntry = ['stupid','garbage']
  thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
  print testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb)
# 调用测试方法----------------------------------------------------------------------
testingNB()

运行结果:

朴素贝叶斯分类算法原理与Python实现与使用方法案例

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
跟老齐学Python之一个免费的实验室
Sep 14 Python
Python tornado队列示例-一个并发web爬虫代码分享
Jan 09 Python
Python将字符串常量转化为变量方法总结
Mar 17 Python
pybind11和numpy进行交互的方法
Jul 04 Python
python实现倒计时小工具
Jul 29 Python
结束运行python的方法
Jun 16 Python
Django中F函数的使用示例代码详解
Jul 06 Python
Python 绘制可视化折线图
Jul 22 Python
python中if嵌套命令实例讲解
Feb 25 Python
numpy实现RNN原理实现
Mar 02 Python
OpenCV中resize函数插值算法的实现过程(五种)
Jun 05 Python
Python使用pandas导入xlsx格式的excel文件内容操作代码
Dec 24 Python
python实现俄罗斯方块
Jun 26 #Python
解决python报错MemoryError的问题
Jun 26 #Python
pygame实现俄罗斯方块游戏
Jun 26 #Python
python和pygame实现简单俄罗斯方块游戏
Feb 19 #Python
解决python读取几千万行的大表内存问题
Jun 26 #Python
详解Python3的TFTP文件传输
Jun 26 #Python
python3爬取数据至mysql的方法
Jun 26 #Python
You might like
PHP 一个比较完善的简单文件上传
2010/03/25 PHP
php二维数组合并及去重复的方法
2015/03/04 PHP
php中访问修饰符的知识点总结
2019/01/27 PHP
PHP常用正则表达式精选(推荐)
2019/05/28 PHP
延时重复执行函数 lLoopRun.js
2007/05/08 Javascript
菜鸟javascript基础资料整理2
2010/12/06 Javascript
怎么选择Javascript框架(Javascript Framework)
2013/11/22 Javascript
JQuery结合CSS操作打印样式的方法
2013/12/24 Javascript
js 本地预览的简单实现方法
2014/02/18 Javascript
nodejs中转换URL字符串与查询字符串详解
2014/11/26 NodeJs
如何解决谷歌浏览器下jquery无法获取图片的尺寸
2015/09/10 Javascript
JS基于onclick事件实现单个按钮的编辑与保存功能示例
2017/02/13 Javascript
解决AngualrJS页面刷新导致异常显示问题
2017/04/20 Javascript
ionic中的$ionicPlatform.ready事件中的通用设置
2017/06/11 Javascript
详解Vue路由自动注入实践
2019/04/17 Javascript
python3使用urllib示例取googletranslate(谷歌翻译)
2014/01/23 Python
python求素数示例分享
2014/02/16 Python
Python的字典和列表的使用中一些需要注意的地方
2015/04/24 Python
Python的randrange()方法使用教程
2015/05/15 Python
浅析Python中将单词首字母大写的capitalize()方法
2015/05/18 Python
浅析Python中的赋值和深浅拷贝
2017/08/15 Python
详解Django之auth模块(用户认证)
2018/04/17 Python
Python中一般处理中文的几种方法
2019/03/06 Python
Python 获取项目根路径的代码
2019/09/27 Python
python跨文件使用全局变量的实现
2020/11/17 Python
python 实现客户端与服务端的通信
2020/12/23 Python
Python之京东商品秒杀的实现示例
2021/01/06 Python
解决tensorflow模型压缩的问题_踩坑无数,总算搞定
2021/03/02 Python
DVF官方网站:美国时装界尊尚品牌
2017/08/29 全球购物
阿根廷在线宠物商店:Puppis
2018/03/23 全球购物
优秀生推荐信范文
2013/11/28 职场文书
会计助理的岗位职责
2013/11/29 职场文书
代领报检证委托书范本
2014/10/11 职场文书
贫困证明怎么写
2015/06/16 职场文书
2016国庆节67周年红领巾广播稿
2015/12/18 职场文书
该怎么书写道歉信?
2019/07/03 职场文书