朴素贝叶斯分类算法原理与Python实现与使用方法案例


Posted in Python onJune 26, 2018

本文实例讲述了朴素贝叶斯分类算法原理与Python实现与使用方法。分享给大家供大家参考,具体如下:

朴素贝叶斯分类算法

1、朴素贝叶斯分类算法原理

1.1、概述

贝叶斯分类算法是一大类分类算法的总称

贝叶斯分类算法以样本可能属于某类的概率来作为分类依据

朴素贝叶斯分类算法是贝叶斯分类算法中最简单的一种

注:朴素的意思是条件概率独立性

P(A|x1x2x3x4)=p(A|x1)*p(A|x2)p(A|x3)p(A|x4)则为条件概率独立
P(xy|z)=p(xyz)/p(z)=p(xz)/p(z)*p(yz)/p(z)

1.2、算法思想

朴素贝叶斯的思想是这样的:

如果一个事物在一些属性条件发生的情况下,事物属于A的概率>属于B的概率,则判定事物属于A

通俗来说比如,你在街上看到一个黑人,我让你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?

在你的脑海中,有这么一个判断流程:

①、这个人的肤色是黑色 <特征>
②、黑色人种是非洲人的概率最高 <条件概率:黑色条件下是非洲人的概率>
③、没有其他辅助信息的情况下,最好的判断就是非洲人

这就是朴素贝叶斯的思想基础。

再扩展一下,假如在街上看到一个黑人讲英语,那我们是怎么去判断他来自于哪里?

提取特征:

肤色: 黑
语言: 英语

黑色人种来自非洲的概率: 80%
黑色人种来自于美国的概率:20%

讲英语的人来自于非洲的概率:10%
讲英语的人来自于美国的概率:90%

在我们的自然思维方式中,就会这样判断:

这个人来自非洲的概率:80% * 10% = 0.08
这个人来自美国的概率:20% * 90% =0.18

我们的判断结果就是:此人来自美国!

其蕴含的数学原理如下:

p(A|xy)=p(Axy)/p(xy)=p(Axy)/p(x)p(y)=p(A)/p(x)*p(A)/p(y)* p(xy)/p(xy)=p(A|x)p(A|y)

P(类别 | 特征)=P(特征 | 类别)*P(类别) / P(特征)

1.3、算法步骤

①、分解各类先验样本数据中的特征
②、计算各类数据中,各特征的条件概率
(比如:特征1出现的情况下,属于A类的概率p(A|特征1),属于B类的概率p(B|特征1),属于C类的概率p(C|特征1)......)
③、分解待分类数据中的特征(特征1、特征2、特征3、特征4......)
④、计算各特征的各条件概率的乘积,如下所示:
判断为A类的概率:p(A|特征1)*p(A|特征2)*p(A|特征3)*p(A|特征4).....
判断为B类的概率:p(B|特征1)*p(B|特征2)*p(B|特征3)*p(B|特征4).....
判断为C类的概率:p(C|特征1)*p(C|特征2)*p(C|特征3)*p(C|特征4).....
......
⑤、结果中的最大值就是该样本所属的类别

1.4、算法应用举例

大众点评、淘宝等电商上都会有大量的用户评论,比如:

1、衣服质量太差了!!!!颜色根本不纯!!! 0
2、我有一有种上当受骗的感觉!!!! 0
3、质量太差,衣服拿到手感觉像旧货!!! 0
4、上身漂亮,合身,很帅,给卖家点赞 1
5、穿上衣服帅呆了,给点一万个赞 1
6、我在他家买了三件衣服!!!!质量都很差! 0

其中1/2/3/6是差评,4/5是好评

现在需要使用朴素贝叶斯分类算法来自动分类其他的评论,比如:

a、这么差的衣服以后再也不买了
b、帅,有逼格
……

1.5、算法应用流程

①、分解出先验数据中的各特征
(即分词,比如“衣服”“质量太差”“差”“不纯”“帅”“漂亮”,“赞”……)
②、计算各类别(好评、差评)中,各特征的条件概率
(比如 p(“衣服”|差评)、p(“衣服”|好评)、p(“差”|好评) 、p(“差”|差评)……)
③、分解出待分类样本的各特征
(比如分解a: “差” “衣服” ……)
④、计算类别概率
P(好评) = p(好评|“差”) *p(好评|“衣服”)*……
P(差评) = p(差评|“差”) *p(差评|“衣服”)*……
⑤、显然P(差评)的结果值更大,因此a被判别为“差评”

1.6、朴素贝叶斯分类算法案例

大体计算方法:

P(好评 | 单词1,单词2,单词3) = P(单词1,单词2,单词3 | 好评) * P(好评) / P(单词1,单词2,单词3)

因为分母都相同,所以只用比较分子即可--->P(单词1,单词2,单词3 | 好评) P(好评)

每个单词之间都是相互独立的---->P(单词1 | 好评)P(单词2 | 好评)P(单词3 | 好评)*P(好评)

P(单词1 | 好评) = 单词1在样本好评中出现的总次数/样本好评句子中总的单词数

P(好评) = 样本好评的条数/样本的总条数

同理:

P(差评 | 单词1,单词2,单词3) = P(单词1,单词2,单词3 | 差评) * P(差评) / P(单词1,单词2,单词3)

因为分母都相同,所以只用比较分子即可--->P(单词1,单词2,单词3 | 差评) P(差评)

每个单词之间都是相互独立的---->P(单词1 | 差评)P(单词2 | 差评)P(单词3 | 差评)*P(差评)

2、 Python案例

#!/usr/bin/python
# coding=utf-8
from numpy import *
# 过滤网站的恶意留言 侮辱性:1   非侮辱性:0
# 创建一个实验样本
def loadDataSet():
  postingList = [['my','dog','has','flea','problems','help','please'],
          ['maybe','not','take','him','to','dog','park','stupid'],
          ['my','dalmation','is','so','cute','I','love','him'],
          ['stop','posting','stupid','worthless','garbage'],
          ['mr','licks','ate','my','steak','how','to','stop','him'],
          ['quit','buying','worthless','dog','food','stupid']]
  classVec = [0,1,0,1,0,1]
  return postingList, classVec
# 创建一个包含在所有文档中出现的不重复词的列表
def createVocabList(dataSet):
  vocabSet = set([])   # 创建一个空集
  for document in dataSet:
    vocabSet = vocabSet | set(document)  # 创建两个集合的并集
  return list(vocabSet)
# 将文档词条转换成词向量
def setOfWords2Vec(vocabList, inputSet):
  returnVec = [0]*len(vocabList)    # 创建一个其中所含元素都为0的向量
  for word in inputSet:
    if word in vocabList:
      # returnVec[vocabList.index(word)] = 1   # index函数在字符串里找到字符第一次出现的位置 词集模型
      returnVec[vocabList.index(word)] += 1   # 文档的词袋模型  每个单词可以出现多次
    else: print "the word: %s is not in my Vocabulary!" % word
  return returnVec
# 朴素贝叶斯分类器训练函数  从词向量计算概率
def trainNB0(trainMatrix, trainCategory):
  numTrainDocs = len(trainMatrix)
  numWords = len(trainMatrix[0])
  pAbusive = sum(trainCategory)/float(numTrainDocs)
  # p0Num = zeros(numWords); p1Num = zeros(numWords)
  # p0Denom = 0.0; p1Denom = 0.0
  p0Num = ones(numWords);  # 避免一个概率值为0,最后的乘积也为0
  p1Num = ones(numWords);  # 用来统计两类数据中,各词的词频
  p0Denom = 2.0; # 用于统计0类中的总数
  p1Denom = 2.0 # 用于统计1类中的总数
  for i in range(numTrainDocs):
    if trainCategory[i] == 1:
      p1Num += trainMatrix[i]
      p1Denom += sum(trainMatrix[i])
    else:
      p0Num += trainMatrix[i]
      p0Denom += sum(trainMatrix[i])
      # p1Vect = p1Num / p1Denom
      # p0Vect = p0Num / p0Denom
  p1Vect = log(p1Num / p1Denom)  # 在类1中,每个次的发生概率
  p0Vect = log(p0Num / p0Denom)   # 避免下溢出或者浮点数舍入导致的错误  下溢出是由太多很小的数相乘得到的
  return p0Vect, p1Vect, pAbusive
# 朴素贝叶斯分类器
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
  p1 = sum(vec2Classify*p1Vec) + log(pClass1)
  p0 = sum(vec2Classify*p0Vec) + log(1.0-pClass1)
  if p1 > p0:
    return 1
  else:
    return 0
def testingNB():
  listOPosts, listClasses = loadDataSet()
  myVocabList = createVocabList(listOPosts)
  trainMat = []
  for postinDoc in listOPosts:
    trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
  p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
  testEntry = ['love','my','dalmation']
  thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
  print testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb)
  testEntry = ['stupid','garbage']
  thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
  print testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb)
# 调用测试方法----------------------------------------------------------------------
testingNB()

运行结果:

朴素贝叶斯分类算法原理与Python实现与使用方法案例

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
Python抓取电影天堂电影信息的代码
Apr 07 Python
Python编码爬坑指南(必看)
Jun 10 Python
python安装PIL模块时Unable to find vcvarsall.bat错误的解决方法
Sep 19 Python
python使用xpath中遇到:到底是什么?
Jan 04 Python
Anaconda 离线安装 python 包的操作方法
Jun 11 Python
Python两台电脑实现TCP通信的方法示例
May 06 Python
python找出列表中大于某个阈值的数据段示例
Nov 24 Python
python、PyTorch图像读取与numpy转换实例
Jan 13 Python
python实现爱奇艺登陆密码RSA加密的方法示例详解
May 27 Python
Python自动巡检H3C交换机实现过程解析
Aug 14 Python
Python面向对象特殊属性及方法解析
Sep 16 Python
基于PyQT5制作一个桌面摸鱼工具
Feb 15 Python
python实现俄罗斯方块
Jun 26 #Python
解决python报错MemoryError的问题
Jun 26 #Python
pygame实现俄罗斯方块游戏
Jun 26 #Python
python和pygame实现简单俄罗斯方块游戏
Feb 19 #Python
解决python读取几千万行的大表内存问题
Jun 26 #Python
详解Python3的TFTP文件传输
Jun 26 #Python
python3爬取数据至mysql的方法
Jun 26 #Python
You might like
php实现mysql数据库操作类分享
2014/02/14 PHP
typecho插件编写教程(一):Hello World
2015/05/28 PHP
全面解析PHP操作Memcache基本函数
2016/07/14 PHP
php中通过eval实现字符串格式的计算公式
2017/03/18 PHP
网页前台通过js非法字符过滤代码(骂人的话等等)
2010/05/26 Javascript
Prototype源码浅析 Enumerable部分之each方法
2012/01/16 Javascript
HTTP 304错误的详细讲解
2013/11/13 Javascript
jQuery常用操作方法及常用函数总结
2014/06/19 Javascript
基于jQuery插件实现环形图标菜单旋转切换特效
2015/05/15 Javascript
通过Jquery.cookie.js实现展示浏览网页的历史记录超管用
2015/10/23 Javascript
JavaScript常用基础知识强化学习
2015/12/09 Javascript
理解Javascript图片预加载
2016/02/23 Javascript
JS实现动态增加和删除li标签行的实例代码
2016/10/16 Javascript
10分钟掌握XML、JSON及其解析
2020/12/06 Javascript
bootstrapfileinput实现文件自动上传
2016/11/08 Javascript
jQuery点击头像上传并预览图片
2017/02/23 Javascript
JS文件/图片从电脑里面拖拽到浏览器上传文件/图片
2017/03/08 Javascript
如何解决vue与传统jquery插件冲突
2017/03/20 Javascript
jquery网页加载进度条的实现
2017/06/01 jQuery
基于JavaScript实现飘落星星特效
2017/08/10 Javascript
jQuery操作attr、prop、val()/text()/html()、class属性
2019/05/23 jQuery
js实现无限层级树形数据结构(创新算法)
2020/02/27 Javascript
[02:14]2016国际邀请赛中国区预选赛Ehome晋级之路
2016/07/01 DOTA
python读取json文件并将数据插入到mongodb的方法
2015/03/23 Python
基于Python的XSS测试工具XSStrike使用方法
2017/07/29 Python
Python实现的NN神经网络算法完整示例
2018/06/19 Python
Guess欧洲官网:美国服饰品牌
2019/08/06 全球购物
波兰运动鞋网上商店:Distance.pl
2020/07/30 全球购物
初中体育教学反思
2014/01/14 职场文书
酒店大堂副理的职责范文
2014/02/13 职场文书
2014国庆节商场促销活动策划方案
2014/09/16 职场文书
2014年财务工作总结范文
2014/11/11 职场文书
2014年教育培训工作总结
2014/12/08 职场文书
初中毕业生自我评价
2015/03/02 职场文书
歼十出击观后感
2015/06/11 职场文书
Java内存模型之happens-before概念详解
2021/06/13 Java/Android