基于python 凸包问题的解决


Posted in Python onApril 16, 2020

最近在看python的算法书,之前在年前买的书,一直在工作间隙的时候,学习充电,终于看到这本书,但是确实又有点难,感觉作者写的代码太炫技 了,有时候注释也不怎么能看懂,终于想到一个方法,就是里面说的算法问题,我就百度python解决他,觉得这个挺好。

下面是凸包问题的一个代码。

# -*- coding: utf-8 -*-
import turtle
import random
import time
f=open('point.txt','w')
for i in range(100):
 x=random.randrange(-250,250,10)
 y=random.randrange(-200,200,10)
 f.write(str(x)+','+str(y)+'\n')
f.close()
point=[]
 
f=open('point.txt')
for i in f:
 try:
  temp=i.split(',')
  x=float(temp[0]); y=float(temp[1])
  point.append((x,y))
 except :
  print 'a err'
f.close()
 
point=list(set(point))#去除重复的点
 
n=0
for i in range(len(point)):
 if point[n][1]>point[i][1]:
  n=i
 
p0=point[n]
point.pop(n)
def compare(a,b):
 x=[a[0]-p0[0],a[1]-p0[1]]
 y=[b[0]-p0[0],b[1]-p0[1]]
 dx=(x[0]**2+x[1]**2)**0.5
 dy=(y[0]**2+y[1]**2)**0.5
 cosa=x[0]/dx
 cosb=y[0]/dy
 if cosa < cosb:
  return 1
 elif cosa > cosb:
  return -1
 else:
  if dx<dy:
   return -1
  elif dx>dy:
   return 1
  else:
   return 0
 
point.sort(compare)
point.insert(0,p0)
ep=point[:]#复制元素,操作ep不会对point产生影响
tag=0
while tag==0:
 tag=1
 l=len(ep)
 for i in range(l):
  i1,i2,i3=(i,(i+1)%l,(i+2)%l)
  x,y,z=(ep[i1],ep[i2],ep[i3])
  a1,a2=((y[0]-x[0],y[1]-x[1]),(z[0]-y[0],z[1]-y[1]))
  if a1[0]*a2[1]-a1[1]*a2[0] < 0:
   tag=0
   ep.pop(i2)
   break
  elif a1[0]*a2[1]-a1[1]*a2[0]==0 and a1[0]*a2[0]<0:
   #==0应改写,360度的情况
   tag=0
   ep.pop(i2)
   break
 
 
def drawpoint(point,color,line):
 p=turtle.getturtle()
 p.hideturtle()
 turtle.delay(1)
 if(line=='p'):
  p.speed(0)
  for i in point:
   p.pu()
   p.color(color)
   p.goto(i)
   p.pd()
   p.dot()
 elif(line=='l'):
  p.pu()
  p.speed(1)
  for i in point:
   p.color(color)
   p.goto(i)
   p.pd()
   p.dot()
  p.goto(point[0])
 
drawpoint(point,'black','p')
drawpoint(ep,'red','l')
time.sleep(1)

补充知识:凸包问题的蛮力算法及python实现

蛮力法的基本思想是先用排除法确定凸包的顶点,然后按逆时针顺序输出这些顶点。在判断点P是不是凸包上的顶点时,有如下性质:

给定平面点集S,P,Pi,Pj,Pk是S中四个不同的点,如果P位于Pi,Pj,Pk组成的三角形内部或边界上,则P不是S的凸包顶点。

那么如何判断点P在三角形内部或边界上?给定平面两点AB,直线方程g(A,B,P)=0时,P位于直线上,g(A,B,P)>0和g(A,B,P)<0时,P分别位于直线的两侧。

判断点P在三角形内部或边界上只需依次检查P和三角形的每个顶点是否位于三角形另外两个顶点确定的直线的同一侧,即判断:

t1=g(pj,pk,p)*g(pj,pk,pi)>=0 ,
t2=g(pi,pk,p)*g(pi,pk,pj)>=0,
t3=g(pj,pi,p)*g(pj,pi,pk)>=0

是否同时成立

凸包问题的蛮力算法伪代码如下:

BruteForce(S):

输入:平面n个点的集合S

输出:按逆时针顺序输出S的凸包的所有顶点

If n=3  Then 以逆时针顺序输出S的顶点,算法结束 找到S中纵坐标最小的点P,该点一定位于凸包上

For S中任意三点Pi,Pj,Pk Do If Pi,Pj,Pk 一点位于其他两点与P构成的三角形内 Then 删除该点

找出S中横坐标最小的点A和横坐标最小的点B

将S划分问直线AB上方点集SU,直线AB下方点集SL,A,B两点属于SL

将SL按横坐标递增排序,SU按横坐标递减排序顺序输出SL,SU

首先随机生成点集S

import random
import itertools

def generate_num(n):
  random_list = list(itertools.product(range(1, 100), range(1, 100)))
  lists=random.sample(random_list, n)
  return lists

判断点P在三角形内部或边界上,即判断点P是否在凸包上

在具体的判断过程中,尤其时坐标点比较密集的情况下,还有有三种比较特殊的情况

组成直线的两点垂直于x轴

除点P外其余三点在一条直线上时,不应删除点P,因为此时点P可能时凸包上的点

除点P外其余三点在一条直线上且垂直于x轴时,不应删除点P,因为此时点P可能时凸包上的点

#判断pi是否位于pj,pk,p0组成三角形内,返回t1,t2,t3三个变量
def isin(pi,pj,pk,p0):
 x1 = float(p0[0])
 x2 = float(pj[0])
 x3 = float(pi[0])
 x4 = float(pk[0])
 y1 = float(p0[1])
 y2 = float(pj[1])
 y3 = float(pi[1])
 y4 = float(pk[1])

 k_j0=0
 b_j0=0
 k_k0=0
 b_k0=0
 k_jk=0
 b_jk=0
 perpendicular1=False
 perpendicular2 = False
 perpendicular3 = False
 #pj,p0组成的直线,看pi,pk是否位于直线同一侧

 if x2 - x1 == 0:
 #pj,p0组成直线垂直于X轴时
  t1=(x3-x2)*(x4-x2)
  perpendicular1=True
 else:
  k_j0 = (y2 - y1) / (x2 - x1)
  b_j0 = y1 - k_j0 * x1
  t1 = (k_j0 * x3 - y3 + b_j0) * (k_j0 * x4 - y4 + b_j0)

 #pk,p0组成的直线,看pi,pj是否位于直线同一侧

 if x4 - x1 == 0:
 #pk,p0组成直线垂直于X轴时
  t2=(x3-x1)*(x2-x1)
  perpendicular2=True
 else:
  k_k0 = (y4 - y1) / (x4 - x1)
  b_k0 = y1 - k_k0 * x1
  t2 = (k_k0 * x3 - y3 + b_k0) * (k_k0 * x2 - y2 + b_k0)

 # pj,pk组成的直线,看pi,p0是否位于直线同一侧

 if x4 - x2 == 0:
 # pj,pk组成直线垂直于X轴时
  t3=(x3-x2)*(x1-x2)
  perpendicular3 = True
 else:
  k_jk = (y4 - y2) / (x4 - x2)
  b_jk = y2 - k_jk * x2
  t3 = (k_jk * x3 - y3 + b_jk) * (k_jk * x1 - y1 + b_jk)
 #如果pk,p0,pj,三点位于同一直线时,不能将点删除
 if (k_j0 * x4 - y4 + b_j0)==0 and (k_k0 * x2 - y2 + b_k0)==0 and (k_jk * x1 - y1 + b_jk)==0 :
   t1=-1
 #如果pk,p0,pj,三点位于同一直线时且垂直于X轴,不能将点删除
 if perpendicular1 and perpendicular2 and perpendicular3:
   t1=-1

 return t1,t2,t3

接下来是实现算法主要部分,用来找出凸包上的点

import isintriangle

def force(lis,n):
 #集合S中点个数为3时,集合本身即为凸包集
 if n==3:
  return lis
 else:
  #集合按纵坐标排序,找出y最小的点p0
  lis.sort(key=lambda x: x[1])
  p0=lis[0]
  #除去p0的其余点集合lis_brute
  lis_brute=lis[1:]
  #temp是用来存放集合需要删除的点在lis_brute内的索引,四个点中如果有一个点在其余三个点组成的三角形内部,则该点一定不是凸包上的点
  temp=[]
  #三重循环找到所有这样在三角形内的点
  for i in range(len(lis_brute)-2):
   pi=lis_brute[i]
   #如果索引i已经在temp中,即pi一定不是凸包上的点,跳过这次循环
   if i in temp:
    continue
   for j in range(i+1,len(lis_brute) - 1):
    pj=lis_brute[j]
    #如果索引j已经在temp中,即pj一定不是凸包上的点,跳过这次循环
    if j in temp:
     continue
    for k in range(j + 1, len(lis_brute)):
     pk=lis_brute[k]

     #如果索引k已经在temp中,即pk一定不是凸包上的点,跳过这次循环
     if k in temp:
      continue
     #判断pi是否在pj,pk,p0构成的三角形内
     (it1,it2,it3)=isintriangle.isin(pi,pj,pk,p0)
     if it1>=0 and it2>=0 and it3>=0:
      if i not in temp:
       temp.append(i) 
     # 判断pj是否在pi,pk,p0构成的三角形内
     (jt1,jt2,jt3)=isintriangle.isin(pj,pi,pk,p0)
     if jt1>=0 and jt2>=0 and jt3>=0:

      if j not in temp:
       temp.append(j)

     # 判断pk是否在pj,pi,p0构成的三角形内
     (kt1, kt2, kt3) = isintriangle.isin(pk, pi, pj, p0)
     if kt1 >= 0 and kt2 >= 0 and kt3 >= 0:

      if k not in temp:
       temp.append(k)
  #listlast是最终选出的凸包集合
  lislast=[]
  for coor in lis_brute:
   loc = [i for i, x in enumerate(lis_brute) if x == coor]
   for x in loc:
    ploc = x
   if ploc not in temp:
    lislast.append(coor)
  #将p0加入凸包集合
  lislast.append(p0)
  return lislast

最后将凸包集合输出就不多说了,按照伪码上实现就可以,凸包蛮力算法在点集大小为1000时结果

基于python 凸包问题的解决

以上这篇基于python 凸包问题的解决就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现的一只从百度开始不断搜索的小爬虫
Aug 13 Python
python getopt详解及简单实例
Dec 30 Python
Python 查找字符在字符串中的位置实例
May 02 Python
解决python "No module named pip" 的问题
Oct 13 Python
python中的单引号双引号区别知识点总结
Jun 23 Python
python使用flask与js进行前后台交互的例子
Jul 19 Python
python使用paramiko模块通过ssh2协议对交换机进行配置的方法
Jul 25 Python
python为QT程序添加图标的方法详解
Mar 09 Python
基于Python第三方插件实现西游记章节标注汉语拼音的方法
May 22 Python
如何用Matplotlib 画三维图的示例代码
Jul 28 Python
Python3.8.2安装包及安装教程图文详解(附安装包)
Nov 28 Python
Python django中如何使用restful框架
Jun 23 Python
python实现交并比IOU教程
Apr 16 #Python
python 弧度与角度互转实例
Apr 15 #Python
使用Python三角函数公式计算三角形的夹角案例
Apr 15 #Python
Python selenium自动化测试模型图解
Apr 15 #Python
python简单实现最大似然估计&amp;scipy库的使用详解
Apr 15 #Python
Python unittest单元测试框架及断言方法
Apr 15 #Python
python 连续不等式语法糖实例
Apr 15 #Python
You might like
音乐朗读剧《MARS RED》2021年TV动画化决定!
2020/03/06 日漫
全国FM电台频率大全 - 19 广东省
2020/03/11 无线电
关于js和php对url编码的处理方法
2014/03/04 PHP
php无限级评论嵌套实现代码
2018/04/18 PHP
一个cssQuery对象 javascript脚本实现代码
2009/07/21 Javascript
使用JQuery和s3captche实现一个水果名字的验证
2009/08/14 Javascript
基于JQuery 滑动与动画的说明介绍
2013/04/18 Javascript
JavaScript执行顺序详细介绍
2013/12/04 Javascript
jQuery性能优化的38个建议
2014/03/04 Javascript
jQuery实现iframe父窗体和子窗体的相互调用
2016/06/17 Javascript
javascript删除html标签函数cIsHTML
2017/01/09 Javascript
Angularjs自定义指令Directive详解
2017/05/27 Javascript
详解Angular CLI + Electron 开发环境搭建
2017/07/20 Javascript
Mui使用jquery并且使用点击跳转新窗口的实例
2017/08/19 jQuery
dropload.js插件下拉刷新和上拉加载使用详解
2017/10/20 Javascript
p5.js入门教程之图片加载
2018/03/20 Javascript
使用JavaScript破解web
2018/09/28 Javascript
JS散列表碰撞处理、开链法、HashTable散列示例
2019/02/08 Javascript
Vue中登录验证成功后保存token,并每次请求携带并验证token操作
2020/09/08 Javascript
Python创建模块及模块导入的方法
2015/05/27 Python
python删除某个字符
2018/03/19 Python
Python3创建Django项目的几种方法(3种)
2020/06/03 Python
Python爬虫爬取博客实现可视化过程解析
2020/06/29 Python
英国最大的宠物食品和宠物用品网上零售商: Zooplus
2016/08/01 全球购物
英国家用电器折扣网站:Electrical Discount UK
2018/09/17 全球购物
会计学专业学生的求职信范文
2014/01/27 职场文书
岗位聘任书范文
2014/03/29 职场文书
职员竞岗演讲稿
2014/05/14 职场文书
啤酒节策划方案
2014/05/28 职场文书
会计专业毕业生自荐书
2014/06/25 职场文书
勿忘国耻9.18演讲稿(经典篇)
2014/09/14 职场文书
党员四风自我剖析材料
2014/10/07 职场文书
公安纪律作风整顿剖析材料
2014/10/10 职场文书
阿里云服务器部署mongodb的详细过程
2021/09/04 MongoDB
MySQL的表级锁,行级锁,排它锁和共享锁
2022/07/15 MySQL
Python爬取奶茶店数据分析哪家最好喝以及性价比
2022/09/23 Python