python实现交并比IOU教程


Posted in Python onApril 16, 2020

交并比(Intersection-over-Union,IoU),目标检测中使用的一个概念,是产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率,即它们的交集与并集的比值。最理想情况是完全重叠,即比值为1。

python实现交并比IOU教程

计算公式:

python实现交并比IOU教程

Python实现代码:

def cal_iou(box1, box2):
 """
 :param box1: = [xmin1, ymin1, xmax1, ymax1]
 :param box2: = [xmin2, ymin2, xmax2, ymax2]
 :return: 
 """
 xmin1, ymin1, xmax1, ymax1 = box1
 xmin2, ymin2, xmax2, ymax2 = box2
 # 计算每个矩形的面积
 s1 = (xmax1 - xmin1) * (ymax1 - ymin1) # C的面积
 s2 = (xmax2 - xmin2) * (ymax2 - ymin2) # G的面积
 
 # 计算相交矩形
 xmin = max(xmin1, xmin2)
 ymin = max(ymin1, ymin2)
 xmax = min(xmax1, xmax2)
 ymax = min(ymax1, ymax2)
 
 w = max(0, xmax - xmin)
 h = max(0, ymax - ymin)
 area = w * h # C∩G的面积
 iou = area / (s1 + s2 - area)
 return iou
# -*-coding: utf-8 -*-
"""
 @Project: IOU
 @File : IOU.py
 @Author : panjq
 @E-mail : pan_jinquan@163.com
 @Date : 2018-10-14 10:44:06
"""
def calIOU_V1(rec1, rec2):
 """
 computing IoU
 :param rec1: (y0, x0, y1, x1), which reflects
   (top, left, bottom, right)
 :param rec2: (y0, x0, y1, x1)
 :return: scala value of IoU
 """
 # 计算每个矩形的面积
 S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
 S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
 
 # computing the sum_area
 sum_area = S_rec1 + S_rec2
 
 # find the each edge of intersect rectangle
 left_line = max(rec1[1], rec2[1])
 right_line = min(rec1[3], rec2[3])
 top_line = max(rec1[0], rec2[0])
 bottom_line = min(rec1[2], rec2[2])
 
 # judge if there is an intersect
 if left_line >= right_line or top_line >= bottom_line:
  return 0
 else:
  intersect = (right_line - left_line) * (bottom_line - top_line)
  return intersect/(sum_area - intersect)
 
def calIOU_V2(rec1, rec2):
 """
 computing IoU
 :param rec1: (y0, x0, y1, x1), which reflects
   (top, left, bottom, right)
 :param rec2: (y0, x0, y1, x1)
 :return: scala value of IoU
 """
 # cx1 = rec1[0]
 # cy1 = rec1[1]
 # cx2 = rec1[2]
 # cy2 = rec1[3]
 # gx1 = rec2[0]
 # gy1 = rec2[1]
 # gx2 = rec2[2]
 # gy2 = rec2[3]
 cx1,cy1,cx2,cy2=rec1
 gx1,gy1,gx2,gy2=rec2
 # 计算每个矩形的面积
 S_rec1 = (cx2 - cx1) * (cy2 - cy1) # C的面积
 S_rec2 = (gx2 - gx1) * (gy2 - gy1) # G的面积
 
 # 计算相交矩形
 x1 = max(cx1, gx1)
 y1 = max(cy1, gy1)
 x2 = min(cx2, gx2)
 y2 = min(cy2, gy2)
 
 w = max(0, x2 - x1)
 h = max(0, y2 - y1)
 area = w * h # C∩G的面积
 
 iou = area / (S_rec1 + S_rec2 - area)
 return iou
 
if __name__=='__main__':
 rect1 = (661, 27, 679, 47)
 # (top, left, bottom, right)
 rect2 = (662, 27, 682, 47)
 iou1 = calIOU_V1(rect1, rect2)
 iou2 = calIOU_V2(rect1, rect2)
 print(iou1)
 print(iou2)

参考:https://3water.com/article/184542.htm

补充知识:Python计算多分类的混淆矩阵,Precision、Recall、f1-score、mIOU等指标

直接上代码,一看很清楚

import os
import numpy as np
from glob import glob
from collections import Counter
 
def cal_confu_matrix(label, predict, class_num):
 confu_list = []
 for i in range(class_num):
  c = Counter(predict[np.where(label == i)])
  single_row = []
  for j in range(class_num):
   single_row.append(c[j])
  confu_list.append(single_row)
 return np.array(confu_list).astype(np.int32)
 
 
def metrics(confu_mat_total, save_path=None):
 '''
 :param confu_mat: 总的混淆矩阵
 backgound:是否干掉背景
 :return: txt写出混淆矩阵, precision,recall,IOU,f-score
 '''
 class_num = confu_mat_total.shape[0]
 confu_mat = confu_mat_total.astype(np.float32) + 0.0001
 col_sum = np.sum(confu_mat, axis=1) # 按行求和
 raw_sum = np.sum(confu_mat, axis=0) # 每一列的数量
 
 '''计算各类面积比,以求OA值'''
 oa = 0
 for i in range(class_num):
  oa = oa + confu_mat[i, i]
 oa = oa / confu_mat.sum()
 
 '''Kappa'''
 pe_fz = 0
 for i in range(class_num):
  pe_fz += col_sum[i] * raw_sum[i]
 pe = pe_fz / (np.sum(confu_mat) * np.sum(confu_mat))
 kappa = (oa - pe) / (1 - pe)
 
 # 将混淆矩阵写入excel中
 TP = [] # 识别中每类分类正确的个数
 
 for i in range(class_num):
  TP.append(confu_mat[i, i])
 
 # 计算f1-score
 TP = np.array(TP)
 FN = col_sum - TP
 FP = raw_sum - TP
 
 # 计算并写出precision,recall, f1-score,f1-m以及mIOU
 
 f1_m = []
 iou_m = []
 for i in range(class_num):
  # 写出f1-score
  f1 = TP[i] * 2 / (TP[i] * 2 + FP[i] + FN[i])
  f1_m.append(f1)
  iou = TP[i] / (TP[i] + FP[i] + FN[i])
  iou_m.append(iou)
 
 f1_m = np.array(f1_m)
 iou_m = np.array(iou_m)
 if save_path is not None:
  with open(save_path + 'accuracy.txt', 'w') as f:
   f.write('OA:\t%.4f\n' % (oa*100))
   f.write('kappa:\t%.4f\n' % (kappa*100))
   f.write('mf1-score:\t%.4f\n' % (np.mean(f1_m)*100))
   f.write('mIou:\t%.4f\n' % (np.mean(iou_m)*100))
 
   # 写出precision
   f.write('precision:\n')
   for i in range(class_num):
    f.write('%.4f\t' % (float(TP[i]/raw_sum[i])*100))
   f.write('\n')
 
   # 写出recall
   f.write('recall:\n')
   for i in range(class_num):
    f.write('%.4f\t' % (float(TP[i] / col_sum[i])*100))
   f.write('\n')
 
   # 写出f1-score
   f.write('f1-score:\n')
   for i in range(class_num):
    f.write('%.4f\t' % (float(f1_m[i])*100))
   f.write('\n')
 
   # 写出 IOU
   f.write('Iou:\n')
   for i in range(class_num):
    f.write('%.4f\t' % (float(iou_m[i])*100))
   f.write('\n')

以上这篇python实现交并比IOU教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python在图片中添加文字的两种方法
Apr 29 Python
Python之web模板应用
Dec 26 Python
pandas 对每一列数据进行标准化的方法
Jun 09 Python
pycharm远程linux开发和调试代码的方法
Jul 17 Python
Python设计模式之代理模式实例详解
Jan 19 Python
详解Django项目中模板标签及模板的继承与引用(网站中快速布置广告)
Mar 27 Python
Python中使用pypdf2合并、分割、加密pdf文件的代码详解
May 21 Python
Python大数据之网络爬虫的post请求、get请求区别实例分析
Nov 16 Python
Python 过滤错误log并导出的实例
Dec 26 Python
使用Bazel编译TensorBoard教程
Feb 15 Python
python GUI库图形界面开发之PyQt5简单绘图板实例与代码分析
Mar 08 Python
如何通过python实现IOU计算代码实例
Nov 02 Python
python 弧度与角度互转实例
Apr 15 #Python
使用Python三角函数公式计算三角形的夹角案例
Apr 15 #Python
Python selenium自动化测试模型图解
Apr 15 #Python
python简单实现最大似然估计&scipy库的使用详解
Apr 15 #Python
Python unittest单元测试框架及断言方法
Apr 15 #Python
python 连续不等式语法糖实例
Apr 15 #Python
Python中使用socks5设置全局代理的方法示例
Apr 15 #Python
You might like
解析php框架codeigniter中如何使用框架的session
2013/06/24 PHP
ThinkPHP入口文件设置及相关注意事项分析
2014/12/05 PHP
WebGame《逆转裁判》完整版 代码下载(1月24日更新)
2007/01/29 Javascript
经常用的图片在容器中的水平垂直居中实例
2007/06/10 Javascript
用javascript模仿ie的自动完成类似自动完成功的表单
2012/12/12 Javascript
jquery实现树形菜单完整代码
2015/12/29 Javascript
Three.js学习之Lamber材质和Phong材质
2016/08/04 Javascript
vue跨域解决方法
2017/10/15 Javascript
教你用Cordova打包Vue项目的方法
2017/10/17 Javascript
如何去除vue项目中的#及其ie9兼容性
2018/01/11 Javascript
详解VUE自定义组件中用.sync修饰符与v-model的区别
2018/06/26 Javascript
node.js之基础加密算法模块crypto详解
2018/09/11 Javascript
解决vue-cli脚手架打包后vendor文件过大的问题
2018/09/27 Javascript
如何用Node写页面爬虫的工具集
2018/10/26 Javascript
NVM安装nodejs的方法实用步骤
2019/01/16 NodeJs
Vue调用后端java接口的实例代码
2019/10/28 Javascript
js点击事件的执行过程实例分析【冒泡与捕获】
2020/04/11 Javascript
vue+ElementUI 关闭对话框清空验证,清除form表单的操作
2020/08/06 Javascript
Flask入门教程实例:搭建一个静态博客
2015/03/27 Python
Python中利用sorted()函数排序的简单教程
2015/04/27 Python
Python监控主机是否存活并以邮件报警
2015/09/22 Python
Python使用defaultdict读取文件各列的方法
2017/05/11 Python
python+tkinter编写电脑桌面放大镜程序实例代码
2018/01/16 Python
详解Ubuntu16.04安装Python3.7及其pip3并切换为默认版本
2019/02/25 Python
django创建简单的页面响应实例教程
2019/09/06 Python
python取均匀不重复的随机数方式
2019/11/27 Python
python如何实现不用装饰器实现登陆器小程序
2019/12/14 Python
Python实现计算长方形面积(带参数函数demo)
2020/01/18 Python
Python定义一个函数的方法
2020/06/15 Python
详解Python中openpyxl模块基本用法
2021/02/23 Python
如何让pre和textarea等HTML元素去掉滚动条自动换行自适应文本内容高度
2019/08/01 HTML / CSS
致跳远运动员加油稿
2014/02/11 职场文书
淘宝好评语句大全
2014/12/31 职场文书
商务代表岗位职责
2015/02/15 职场文书
兴趣班停课通知
2015/04/24 职场文书
详解CSS3.0(Cascading Style Sheet) 层叠级联样式表
2021/07/16 HTML / CSS