深入理解NumPy简明教程---数组2


Posted in Python onDecember 17, 2016

NumPy数组(2、数组的操作)

基本运算

数组的算术运算是按元素逐个运算。数组运算后将创建包含运算结果的新数组。

>>> a= np.array([20,30,40,50]) 
>>> b= np.arange( 4) 
>>> b 
array([0, 1, 2, 3]) 
>>> c= a-b 
>>> c 
array([20, 29, 38, 47]) 
>>> b**2 
array([0, 1, 4, 9]) 
>>> 10*np.sin(a) 
array([ 9.12945251,-9.88031624, 7.4511316, -2.62374854]) 
>>> a<35 
array([True, True, False, False], dtype=bool)

与其他矩阵语言不同,NumPy中的乘法运算符*按元素逐个计算,矩阵乘法可以使用dot函数或创建矩阵对象实现(后续章节会介绍)

>>> A= np.array([[1,1], 
...[0,1]]) 
>>> B= np.array([[2,0], 
...[3,4]]) 
>>> A*B # 逐个元素相乘 
array([[2, 0], 
   [0, 4]]) 
>>> np.dot(A,B) # 矩阵相乘 
array([[5, 4], 
  
 [3, 4]])

有些操作符如+=和*=用来更改已存在数组而不创建一个新的数组。

>>> a= np.ones((2,3), dtype=int) 
>>> b= np.random.random((2,3)) 
>>> a*= 3 
>>> a 
array([[3, 3, 3], 
   [3, 3, 3]]) 
>>> b+= a 
>>> b 
array([[ 3.69092703, 3.8324276, 3.0114541], 
  
  [ 3.18679111, 3.3039349, 3.37600289]]) 
>>> a+= b # b转换为整数类型 
>>> a 
array([[6, 6, 6], 
      [6, 6, 6]])

当数组中存储的是不同类型的元素时,数组将使用占用更多位(bit)的数据类型作为其本身的数据类型,也就是偏向更精确的数据类型(这种行为叫做upcast)。

>>> a= np.ones(3, dtype=np.int32) 
>>> b= np.linspace(0,np.pi,3) 
>>> b.dtype.name 
'float64' 
>>> c= a+b 
>>> c 
array([ 1., 2.57079633, 4.14159265]) 
>>> c.dtype.name 
'float64' 
>>> d= exp(c*1j) 
>>> d 
array([ 0.54030231+0.84147098j,-0.84147098+0.54030231j, 
    -0.54030231-0.84147098j]) 
>>> d.dtype.name 
'complex128'

许多非数组运算,如计算数组所有元素之和,都作为ndarray类的方法来实现,使用时需要用ndarray类的实例来调用这些方法。

>>> a= np.random.random((2,3)) 
>>> a 
array([[ 0.65806048, 0.58216761, 0.59986935], 
      [ 0.6004008, 0.41965453, 0.71487337]]) 
>>> a.sum() 
  3.5750261436902333 
>>> a.min() 
   0.41965453489104032 
>>> a.max() 
   0.71487337095581649

这些运算将数组看作是一维线性列表。但可通过指定axis参数(即数组的行)对指定的轴做相应的运算:

>>> b= np.arange(12).reshape(3,4) 
>>> b 
array([[ 0, 1, 2, 3], 
      [ 4, 5, 6, 7], 
      [ 8, 9, 10, 11]]) 
>>> b.sum(axis=0) # 计算每一列的和,注意理解轴的含义,参考数组的第一篇文章 
array([12, 15, 18, 21]) 
>>> b.min(axis=1) # 获取每一行的最小值 
array([0, 4, 8]) 
>>> b.cumsum(axis=1) # 计算每一行的累积和 
array([[ 0, 1, 3, 6], 
      [ 4, 9, 15, 22], 
      [ 8, 17, 27, 38]])

索引,切片和迭代

和列表和其它Python序列一样,一维数组可以进行索引、切片和迭代操作。

>>> a= np.arange(10)**3 #记住,操作符是对数组中逐元素处理的! 
>>> a 
array([0, 1, 8, 27, 64, 125, 216, 343, 512, 729]) 
>>> a[2] 
8 
>>> a[2:5] 
array([ 8, 27, 64]) 
>>> a[:6:2]= -1000 # 等同于a[0:6:2]= -1000,从开始到第6个位置,每隔一个元素将其赋值为-1000 
>>> a 
array([-1000, 1,-1000, 27,-1000, 125, 216, 343, 512, 729]) 
>>> a[: :-1] # 反转a 
array([ 729, 512, 343, 216, 125,-1000, 27,-1000, 1,-1000]) 
>>>for i in a: 
...  print i**(1/3.), 
... 
nan 1.0 nan 3.0 nan 5.0 6.0 7.0 8.0 9.0

多维数组可以每个轴有一个索引。这些索引由一个逗号分割的元组给出。

>>>def f(x,y): 
...  return 10*x+y 
... 
>>> b= np.fromfunction(f,(5,4),dtype=int) #fromfunction是一个函数,下篇文章介绍。 
>>> b 
array([[ 0, 1, 2, 3], 
      [10, 11, 12, 13], 
      [20, 21, 22, 23], 
      [30, 31, 32, 33], 
      [40, 41, 42, 43]]) 
>>> b[2,3] 
23 
>>> b[0:5, 1] # 每行的第二个元素 
array([ 1, 11, 21, 31, 41]) 
>>> b[: ,1] # 与前面的效果相同 
array([ 1, 11, 21, 31, 41]) 
>>> b[1:3,: ] # 每列的第二和第三个元素 
array([[10, 11, 12, 13], 
      [20, 21, 22, 23]])

当少于提供的索引数目少于轴数时,已给出的数值按秩的顺序复制,确失的索引则默认为是整个切片:

>>> b[-1] # 最后一行,等同于b[-1,:],-1是第一个轴,而缺失的认为是:,相当于整个切片。 
array([40, 41, 42, 43])

 b[i]中括号中的表达式被当作i和一系列:,来代表剩下的轴。NumPy也允许你使用“点”像b[i,...]。

点(…)代表许多产生一个完整的索引元组必要的分号。如果x是秩为5的数组(即它有5个轴),那么:

 

  • x[1,2,…] 等同于 x[1,2,:,:,:], 
  • x[…,3] 等同于 x[:,:,:,:,3]
  • x[4,…,5,:] 等同 x[4,:,:,5,:] 
>>> c= array( [ [[ 0, 1, 2], #三维数组(两个2维数组叠加而成) 
...[ 10, 12, 13]], 
... 
...[[100,101,102], 
...[110,112,113]]] ) 
>>> c.shape 
 (2, 2, 3) 
>>> c[1,...] #等同于c[1,:,:]或c[1] 
array([[100, 101, 102], 
      [110, 112, 113]]) 
>>> c[...,2] #等同于c[:,:,2] 
array([[ 2, 13], 
      [102, 113]])

多维数组的遍历是以是第一个轴为基础的:

>>>for row in b: 
...  print row 
... 
[0 1 2 3] 
[10 11 12 13] 
[20 21 22 23] 
[30 31 32 33] 
[40 41 42 43]

如果想对数组中每个元素都进行处理,可以使用flat属性,该属性是一个数组元素迭代器:

>>>for element in b.flat: 
...  print element, 
... 
0 1 2 3 10 11 12 13 20 21 22 23 30 31 32 33 40 41 42 43

更多关于[]、…、newaxis、ndenumerate、indices、index exp的内容请参考NumPy示例

形状(shape)操作

更改数组的形状

数组的形状取决于其每个轴上的元素个数:

>>> a= np.floor(10*np.random.random((3,4))) 
>>> a 
array([[ 7., 5., 9., 3.], 
      [ 7., 2., 7., 8.], 
      [ 6., 8., 3., 2.]]) 
>>> a.shape 
(3, 4)

可以用多种方式修改数组的形状:

>>> a.ravel() # 平坦化数组 
array([ 7., 5., 9., 3., 7., 2., 7., 8., 6., 8., 3., 2.]) 
>>> a.shape= (6, 2) 
>>> a.transpose() 
array([[ 7., 9., 7., 7., 6., 3.], 
      [ 5., 3., 2., 8., 8., 2.]])

由ravel()展平的数组元素的顺序通常是“C风格”的,就是以行为基准,最右边的索引变化得最快,所以元素a[0,0]之后是a[0,1]。如果数组改变成其它形状(reshape),数组仍然是“C风格”的。NumPy通常创建一个以这个顺序保存数据的数组,所以ravel()通常不需要创建起调用数组的副本。但如果数组是通过切片其它数组或有不同寻常的选项时,就可能需要创建其副本。还可以同过一些可选参数函数让reshape()和ravel()构建FORTRAN风格的数组,即最左边的索引变化最快。

reshape函数改变调用数组的形状并返回该数组,而resize函数改变调用数组自身。

>>> a 
array([[ 7., 5.], 
      [ 9., 3.], 
      [ 7., 2.], 
      [ 7., 8.], 
      [ 6., 8.], 
      [ 3., 2.]]) 
>>> a.resize((2,6)) 
>>> a 
array([[ 7., 5., 9., 3., 7., 2.], 
      [ 7., 8., 6., 8., 3., 2.]])

如果在reshape操作中指定一个维度为-1,那么其准确维度将根据实际情况计算得到

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用urlparse分析网址中域名的方法
Apr 15 Python
python统计文本文件内单词数量的方法
May 30 Python
举例讲解Python设计模式编程中的访问者与观察者模式
Jan 26 Python
Python随机生成带特殊字符的密码
Mar 02 Python
python 将print输出的内容保存到txt文件中
Jul 17 Python
Python的UTC时间转换讲解
Feb 26 Python
Python中使用双下划线防止类属性被覆盖问题
Jun 27 Python
Python爬虫使用代理IP的实现
Oct 27 Python
Django中密码的加密、验密、解密操作
Dec 19 Python
Spring http服务远程调用实现过程解析
Jun 11 Python
Numpy(Pandas)删除全为零的列的方法
Sep 11 Python
python基于机器学习预测股票交易信号
May 25 Python
深入理解NumPy简明教程---数组1
Dec 17 #Python
Python脚本获取操作系统版本信息
Dec 17 #Python
详解python中xlrd包的安装与处理Excel表格
Dec 16 #Python
详解python开发环境搭建
Dec 16 #Python
python制作爬虫爬取京东商品评论教程
Dec 16 #Python
python用模块zlib压缩与解压字符串和文件的方法
Dec 16 #Python
Python用UUID库生成唯一ID的方法示例
Dec 15 #Python
You might like
global.php
2006/12/09 PHP
AJAX for PHP简单表数据查询实例
2007/01/02 PHP
mcrypt启用 加密以及解密过程详细解析
2013/08/07 PHP
TreeView 用法(有代码)(asp.net)
2011/07/15 Javascript
JavaScript网页定位详解
2014/01/13 Javascript
jQuery中delegate()方法用法实例
2015/01/19 Javascript
深入分析Javascript跨域问题
2015/04/17 Javascript
原生JavaScript实现异步多文件上传
2015/12/02 Javascript
详解JavaScript 中的 replace 方法
2016/01/01 Javascript
JS延时器提示框的应用实例代码解析
2016/04/27 Javascript
Bootstrap编写一个在当前网页弹出可关闭的对话框 非弹窗
2016/06/30 Javascript
nodejs 实现钉钉ISV接入的加密解密方法
2017/01/16 NodeJs
Angular 2 ngForm中的ngModel、[ngModel]和[(ngModel)]的写法
2017/06/29 Javascript
jQuery实现导航栏头部菜单项点击后变换颜色的方法
2017/07/19 jQuery
bootstrap table实现双击可编辑、添加、删除行功能
2017/09/27 Javascript
ionic grid(栅格)九宫格制作详解
2018/06/30 Javascript
解决betterScroll在vue中存在图片时,出现拉不动的问题
2018/09/27 Javascript
js实现input密码框显示/隐藏功能
2020/09/10 Javascript
vue项目中运用webpack动态配置打包多种环境域名的方法
2019/06/24 Javascript
vue中改变滚动条样式的方法
2020/03/03 Javascript
JS中的继承操作实例总结
2020/06/06 Javascript
jenkins自动构建发布vue项目的方法步骤
2021/01/04 Vue.js
python 队列详解及实例代码
2016/10/18 Python
Python函数式编程
2017/07/20 Python
Python中pandas模块DataFrame创建方法示例
2018/06/20 Python
Tensorflow矩阵运算实例(矩阵相乘,点乘,行/列累加)
2020/02/05 Python
python 判断txt每行内容中是否包含子串并重新写入保存的实例
2020/03/12 Python
html5嵌入内容_动力节点Java学院整理
2017/07/07 HTML / CSS
美国LOGO设计公司:The Logo Company
2018/07/16 全球购物
申报优秀教师材料
2014/12/16 职场文书
收银员岗位职责
2015/02/03 职场文书
部门2015年度工作总结
2015/04/29 职场文书
服务行业标语口号
2015/12/26 职场文书
2016年党员创先争优公开承诺书
2016/03/25 职场文书
Go遍历struct,map,slice的实现
2021/06/13 Golang
Python中的turtle画箭头,矩形,五角星
2022/03/16 Python