深入理解NumPy简明教程---数组1


Posted in Python onDecember 17, 2016

目前我的工作是将NumPy引入到Pyston中(一款Dropbox实现的Python编译器/解释器)。在工作过程中,我深入接触了NumPy源码,了解其实现并提交了PR修复NumPy的bug。在与NumPy源码以及NumPy开发者打交道的过程中,我发现当今中文NumPy教程大部分都是翻译或参考英文文档,因此导致了许多疏漏。比如NumPy数组中的broadcast功能,几乎所有中文文档都翻译为“广播”。而NumPy的开发者之一,回复到“broadcast is a compound -- native English speakers can see that it's " broad" + "cast" = "cast (scatter, distribute) broadly, I guess "cast (scatter, distribute) broadly" probably is closer to the meaning(NumPy中的含义)"。有鉴于此,我打算启动一个项目,以我对NumPy使用以及源码层面的了解编写一个系列的教程。

NumPy数组

NumPy数组是一个多维数组对象,称为ndarray。其由两部分组成:

  • 实际的数据
  • 描述这些数据的元数据

大部分操作仅针对于元数据,而不改变底层实际的数据。

关于NumPy数组有几点必需了解的:

  • NumPy数组的下标从0开始。
  • 同一个NumPy数组中所有元素的类型必须是相同的。

NumPy数组属性

在详细介绍NumPy数组之前。先详细介绍下NumPy数组的基本属性。NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是NumPy中的轴(axes),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。

NumPy的数组中比较重要ndarray对象属性有:

  • ndarray.ndim:数组的维数(即数组轴的个数),等于秩。最常见的为二维数组(矩阵)。
  • ndarray.shape:数组的维度。为一个表示数组在每个维度上大小的整数元组。例如二维数组中,表示数组的“行数”和“列数”。ndarray.shape返回一个元组,这个元组的长度就是维度的数目,即ndim属性。
  • ndarray.size:数组元素的总个数,等于shape属性中元组元素的乘积。
  • ndarray.dtype:表示数组中元素类型的对象,可使用标准的Python类型创建或指定dtype。另外也可使用前一篇文章中介绍的NumPy提供的数据类型。
  • ndarray.itemsize:数组中每个元素的字节大小。例如,一个元素类型为float64的数组itemsiz属性值为8(float64占用64个bits,每个字节长度为8,所以64/8,占用8个字节),又如,一个元素类型为complex32的数组item属性为4(32/8)。
  • ndarray.data:包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。

创建数组

先来介绍创建数组。创建数组的方法有很多。如可以使用array函数从常规的Python列表和元组创造数组。所创建的数组类型由原序列中的元素类型推导而来。

  

>>> from numpy import *   
>>> a = array( [2,3,4] )
  
>>> a 
  array([2, 3, 4]) 
>>> a.dtype 
  dtype('int32') 
>>> b = array([1.2, 3.5, 5.1])
  
>>> b.dtype 
  dtype('float64')

使用array函数创建时,参数必须是由方括号括起来的列表,而不能使用多个数值作为参数调用array。

 

>>> a = array(1,2,3,4)  # 错误 
>>> a = array([1,2,3,4]) # 正确

可使用双重序列来表示二维的数组,三重序列表示三维数组,以此类推。

>>> b = array( [ (1.5,2,3), (4,5,6) ] ) 
>>> b 
  array([[ 1.5, 2. , 3. ], 

    [ 4. , 5. , 6. ]])

可以在创建时显式指定数组中元素的类型

>>> c = array( [ [1,2], [3,4] ], dtype=complex) 
>>> c 
  array([[ 1.+0.j, 2.+0.j], 
   [ 3.+0.j, 4.+0.j]])

通常,刚开始时数组的元素未知,而数组的大小已知。因此,NumPy提供了一些使用占位符创建数组的函数。这些函数有助于满足除了数组扩展的需要,同时降低了高昂的运算开销。

用函数zeros可创建一个全是0的数组,用函数ones可创建一个全为1的数组,函数empty创建一个内容随机并且依赖与内存状态的数组。默认创建的数组类型(dtype)都是float64。

可以哟娜特d.dtype.itemsize来查看数组中元素占用的字节数目。

>>> d = zeros((3,4)) 
>>> d.dtype 
dtype('float64') 
>>> d 
array([[ 0., 0., 0., 0.], 
  [ 0., 0., 0., 0.], 

  [ 0., 0., 0., 0.]]) 
>>> d.dtype.itemsize 
8

也可以自己制定数组中元素的类型

>>> ones( (2,3,4), dtype=int16 ) #手动指定数组中元素类型 
   array([[[1, 1, 1, 1], 
     [1, 1, 1, 1], 

     [1, 1, 1, 1]], 

  

     [[1, 1, 1, 1], 

     [1, 1, 1, 1], 

     [1, 1, 1, 1]]], dtype=int16) 
>>> empty((2,3)) 

 array([[ 2.65565858e-316,  0.00000000e+000,  0.00000000e+000], 

     [ 0.00000000e+000,  0.00000000e+000,  0.00000000e+000]])

NumPy提供一个类似arange的函数返回一个数列形式的数组:

>>> arange(10, 30, 5) 
  array([10, 15, 20, 25])

以10开始,差值为5的等差数列。该函数不仅接受整数,还接受浮点参数: 

>>> arange(0,2,0.5) 
  array([ 0. , 0.5, 1. , 1.5])

当arange使用浮点数参数时,由于浮点数精度有限,通常无法预测获得的元素个数。因此,最好使用函数linspace去接收我们想要的元素个数来代替用range来指定步长。linespace用法如下,将在通用函数一节中详细介绍。

>>> numpy.linspace(-1, 0, 5) 
    array([-1. , -0.75, -0.5 , -0.25, 0. ])

数组中的元素是通过下标来访问的,可以通过方括号括起一个下标来访问数组中单一一个元素,也可以以切片的形式访问数组中多个元素。关于切片访问,将在切片一节介绍。

知识点:NumPy中的数据类型

对于科学计算来说,Python中自带的整型、浮点型和复数类型远远不够,因此NumPy中添加了许多数据类型。如下:

NumPy中的基本数据类型

NumPy中的基本数据类型
名称 描述
bool 用一个字节存储的布尔类型(True或False)
inti 由所在平台决定其大小的整数(一般为int32或int64)
int8 一个字节大小,-128 至 127
int16 整数,-32768 至 32767
int32 整数,-2 ** 31 至 2 ** 32 -1
int64 整数,-2 ** 63 至 2 ** 63 - 1
uint8 无符号整数,0 至 255
uint16 无符号整数,0 至 65535
uint32 无符号整数,0 至 2 ** 32 - 1
uint64 无符号整数,0 至 2 ** 64 - 1
float16 半精度浮点数:16位,正负号1位,指数5位,精度10位
float32 单精度浮点数:32位,正负号1位,指数8位,精度23位
float64或float 双精度浮点数:64位,正负号1位,指数11位,精度52位
complex64 复数,分别用两个32位浮点数表示实部和虚部
complex128或complex 复数,分别用两个64位浮点数表示实部和虚部

NumPy类型转换方式如下:

>>> float64(42) 
  42.0 
>>> int8(42.0) 
  42 
>>> bool(42) 
  True 
>>> bool(42.0) 
  True 
>>> float(True) 
  1.0

许多函数的参数中可以指定参数的类型,当然,这个类型参数是可选的。如下:

>>> arange(7, dtype=uint16) 
  array([0, 1, 2, 3, 4, 5, 6], dtype=uint16)

输出数组

当输出一个数组时,NumPy以特定的布局用类似嵌套列表的形式显示:

  • 第一行从左到右输出
  • 每行依次自上而下输出
  • 每个切片通过一个空行与下一个隔开
  • 一维数组被打印成行,二维数组成矩阵,三维数组成矩阵列表。 
>>> a = arange(6)             # 1d array 
>>> print a 
  [0 1 2 3 4 5] 
  
>>> b = arange(12).reshape(4,3)      # 2d array 
>>> print b 
  [[ 0 1 2] 
  [ 3 4 5] 
  [ 6 7 8] 
  [ 9 10 11]]
  
>>> c = arange(24).reshape(2,3,4)     # 3d array 
>>> print c 
  [[[ 0 1 2 3] 
  [ 4 5 6 7] 
  [ 8 9 10 11]] 

  
  [[12 13 14 15] 
  [16 17 18 19] 
  [20 21 22 23]]]

 reshape将在下一篇文章中介绍 

如果一个数组太长,则NumPy自动省略中间部分而只打印两端的数据:

 

>>> print arange(10000) 
 [  0  1  2 ..., 9997 9998 9999] 

  
>>> print arange(10000).reshape(100,100) 

 [[  0  1  2 ...,  97  98  99] 

  [ 100 101 102 ..., 197 198 199] 

  [ 200 201 202 ..., 297 298 299] 

  ..., 

  [9700 9701 9702 ..., 9797 9798 9799] 

  [9800 9801 9802 ..., 9897 9898 9899] 

  [9900 9901 9902 ..., 9997 9998 9999]]

可通过设置printoptions参数来禁用NumPy的这种行为并强制打印整个数组。

set_printoptions(threshold='nan')

这样,输出时数组的所有元素都会显示出来。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
详解Python中find()方法的使用
May 18 Python
Python argv用法详解
Jan 08 Python
Python中random模块生成随机数详解
Mar 10 Python
深入浅析Python中的yield关键字
Jan 24 Python
Python实现找出数组中第2大数字的方法示例
Mar 26 Python
Python实现按照指定要求逆序输出一个数字的方法
Apr 19 Python
python实现log日志的示例代码
Apr 28 Python
Python嵌套列表转一维的方法(压平嵌套列表)
Jul 03 Python
spark dataframe 将一列展开,把该列所有值都变成新列的方法
Jan 29 Python
docker django无法访问redis容器的解决方法
Aug 21 Python
python模拟点击网页按钮实现方法
Feb 25 Python
如何在mac下配置python虚拟环境
Jul 06 Python
Python脚本获取操作系统版本信息
Dec 17 #Python
详解python中xlrd包的安装与处理Excel表格
Dec 16 #Python
详解python开发环境搭建
Dec 16 #Python
python制作爬虫爬取京东商品评论教程
Dec 16 #Python
python用模块zlib压缩与解压字符串和文件的方法
Dec 16 #Python
Python用UUID库生成唯一ID的方法示例
Dec 15 #Python
python常见的格式化输出小结
Dec 15 #Python
You might like
PHP文件下载类
2006/12/06 PHP
PHPExcel简单读取excel文件示例
2016/05/26 PHP
thinkPHP5.0框架开发规范简介
2017/03/25 PHP
js最简单的拖拽效果实现代码
2010/09/24 Javascript
javascript attachEvent绑定多个事件执行顺序问题
2010/10/20 Javascript
js父页面与子页面不同时显示的方法
2014/10/16 Javascript
js实现简洁的TAB滑动门效果代码
2015/09/06 Javascript
pace.js页面加载进度条插件
2015/09/29 Javascript
IE6-IE9使用JSON、table.innerHTML所引发的问题
2015/12/22 Javascript
只需五句话搞定JavaScript作用域(经典)
2016/07/26 Javascript
微信小程序 POST请求(网络请求)详解及实例代码
2016/11/16 Javascript
手机软键盘弹出时影响布局的解决方法
2016/12/15 Javascript
详解Vue.js 2.0 如何使用axios
2017/04/21 Javascript
Vue.js 2.0学习教程之从基础到组件详解
2017/04/24 Javascript
javaScript和jQuery自动加载简单代码实现方法
2017/11/24 jQuery
js实现把时间戳转换为yyyy-MM-dd hh:mm 格式(es6语法)
2017/12/28 Javascript
vue中mint-ui的使用方法
2018/04/04 Javascript
webpack4.0 入门实践教程
2018/10/08 Javascript
JS实现的新闻列表自动滚动效果示例
2019/01/30 Javascript
Vue-Cli 3.0 中配置高德地图的两种方式
2019/06/19 Javascript
详解JavaScript中的Object.is()与"==="运算符总结
2020/06/17 Javascript
Python开发的单词频率统计工具wordsworth使用方法
2014/06/25 Python
python根据文件大小打log日志
2014/10/09 Python
在Python的web框架中编写创建日志的程序的教程
2015/04/30 Python
Python中random模块用法实例分析
2015/05/19 Python
Python函数式编程
2017/07/20 Python
Python实现的简单线性回归算法实例分析
2018/12/26 Python
python按照list中字典的某key去重的示例代码
2020/10/13 Python
戴尔英国翻新电脑和电子产品:Dell UK Refurbished Computers
2019/07/30 全球购物
Jack Rogers官网:美国经典的女性鞋靴品牌
2019/09/04 全球购物
英语专业大学生求职简历的自我评价
2013/10/18 职场文书
公司前台接待岗位职责
2013/12/03 职场文书
女儿十岁生日答谢词
2014/01/27 职场文书
2014两会学习心得:时代的发展
2014/03/17 职场文书
Vue3如何理解ref toRef和toRefs的区别
2022/02/18 Vue.js
分享CSS盒子模型隐藏的几种方式
2022/02/28 HTML / CSS