深入理解NumPy简明教程---数组1


Posted in Python onDecember 17, 2016

目前我的工作是将NumPy引入到Pyston中(一款Dropbox实现的Python编译器/解释器)。在工作过程中,我深入接触了NumPy源码,了解其实现并提交了PR修复NumPy的bug。在与NumPy源码以及NumPy开发者打交道的过程中,我发现当今中文NumPy教程大部分都是翻译或参考英文文档,因此导致了许多疏漏。比如NumPy数组中的broadcast功能,几乎所有中文文档都翻译为“广播”。而NumPy的开发者之一,回复到“broadcast is a compound -- native English speakers can see that it's " broad" + "cast" = "cast (scatter, distribute) broadly, I guess "cast (scatter, distribute) broadly" probably is closer to the meaning(NumPy中的含义)"。有鉴于此,我打算启动一个项目,以我对NumPy使用以及源码层面的了解编写一个系列的教程。

NumPy数组

NumPy数组是一个多维数组对象,称为ndarray。其由两部分组成:

  • 实际的数据
  • 描述这些数据的元数据

大部分操作仅针对于元数据,而不改变底层实际的数据。

关于NumPy数组有几点必需了解的:

  • NumPy数组的下标从0开始。
  • 同一个NumPy数组中所有元素的类型必须是相同的。

NumPy数组属性

在详细介绍NumPy数组之前。先详细介绍下NumPy数组的基本属性。NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是NumPy中的轴(axes),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。

NumPy的数组中比较重要ndarray对象属性有:

  • ndarray.ndim:数组的维数(即数组轴的个数),等于秩。最常见的为二维数组(矩阵)。
  • ndarray.shape:数组的维度。为一个表示数组在每个维度上大小的整数元组。例如二维数组中,表示数组的“行数”和“列数”。ndarray.shape返回一个元组,这个元组的长度就是维度的数目,即ndim属性。
  • ndarray.size:数组元素的总个数,等于shape属性中元组元素的乘积。
  • ndarray.dtype:表示数组中元素类型的对象,可使用标准的Python类型创建或指定dtype。另外也可使用前一篇文章中介绍的NumPy提供的数据类型。
  • ndarray.itemsize:数组中每个元素的字节大小。例如,一个元素类型为float64的数组itemsiz属性值为8(float64占用64个bits,每个字节长度为8,所以64/8,占用8个字节),又如,一个元素类型为complex32的数组item属性为4(32/8)。
  • ndarray.data:包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。

创建数组

先来介绍创建数组。创建数组的方法有很多。如可以使用array函数从常规的Python列表和元组创造数组。所创建的数组类型由原序列中的元素类型推导而来。

  

>>> from numpy import *   
>>> a = array( [2,3,4] )
  
>>> a 
  array([2, 3, 4]) 
>>> a.dtype 
  dtype('int32') 
>>> b = array([1.2, 3.5, 5.1])
  
>>> b.dtype 
  dtype('float64')

使用array函数创建时,参数必须是由方括号括起来的列表,而不能使用多个数值作为参数调用array。

 

>>> a = array(1,2,3,4)  # 错误 
>>> a = array([1,2,3,4]) # 正确

可使用双重序列来表示二维的数组,三重序列表示三维数组,以此类推。

>>> b = array( [ (1.5,2,3), (4,5,6) ] ) 
>>> b 
  array([[ 1.5, 2. , 3. ], 

    [ 4. , 5. , 6. ]])

可以在创建时显式指定数组中元素的类型

>>> c = array( [ [1,2], [3,4] ], dtype=complex) 
>>> c 
  array([[ 1.+0.j, 2.+0.j], 
   [ 3.+0.j, 4.+0.j]])

通常,刚开始时数组的元素未知,而数组的大小已知。因此,NumPy提供了一些使用占位符创建数组的函数。这些函数有助于满足除了数组扩展的需要,同时降低了高昂的运算开销。

用函数zeros可创建一个全是0的数组,用函数ones可创建一个全为1的数组,函数empty创建一个内容随机并且依赖与内存状态的数组。默认创建的数组类型(dtype)都是float64。

可以哟娜特d.dtype.itemsize来查看数组中元素占用的字节数目。

>>> d = zeros((3,4)) 
>>> d.dtype 
dtype('float64') 
>>> d 
array([[ 0., 0., 0., 0.], 
  [ 0., 0., 0., 0.], 

  [ 0., 0., 0., 0.]]) 
>>> d.dtype.itemsize 
8

也可以自己制定数组中元素的类型

>>> ones( (2,3,4), dtype=int16 ) #手动指定数组中元素类型 
   array([[[1, 1, 1, 1], 
     [1, 1, 1, 1], 

     [1, 1, 1, 1]], 

  

     [[1, 1, 1, 1], 

     [1, 1, 1, 1], 

     [1, 1, 1, 1]]], dtype=int16) 
>>> empty((2,3)) 

 array([[ 2.65565858e-316,  0.00000000e+000,  0.00000000e+000], 

     [ 0.00000000e+000,  0.00000000e+000,  0.00000000e+000]])

NumPy提供一个类似arange的函数返回一个数列形式的数组:

>>> arange(10, 30, 5) 
  array([10, 15, 20, 25])

以10开始,差值为5的等差数列。该函数不仅接受整数,还接受浮点参数: 

>>> arange(0,2,0.5) 
  array([ 0. , 0.5, 1. , 1.5])

当arange使用浮点数参数时,由于浮点数精度有限,通常无法预测获得的元素个数。因此,最好使用函数linspace去接收我们想要的元素个数来代替用range来指定步长。linespace用法如下,将在通用函数一节中详细介绍。

>>> numpy.linspace(-1, 0, 5) 
    array([-1. , -0.75, -0.5 , -0.25, 0. ])

数组中的元素是通过下标来访问的,可以通过方括号括起一个下标来访问数组中单一一个元素,也可以以切片的形式访问数组中多个元素。关于切片访问,将在切片一节介绍。

知识点:NumPy中的数据类型

对于科学计算来说,Python中自带的整型、浮点型和复数类型远远不够,因此NumPy中添加了许多数据类型。如下:

NumPy中的基本数据类型

NumPy中的基本数据类型
名称 描述
bool 用一个字节存储的布尔类型(True或False)
inti 由所在平台决定其大小的整数(一般为int32或int64)
int8 一个字节大小,-128 至 127
int16 整数,-32768 至 32767
int32 整数,-2 ** 31 至 2 ** 32 -1
int64 整数,-2 ** 63 至 2 ** 63 - 1
uint8 无符号整数,0 至 255
uint16 无符号整数,0 至 65535
uint32 无符号整数,0 至 2 ** 32 - 1
uint64 无符号整数,0 至 2 ** 64 - 1
float16 半精度浮点数:16位,正负号1位,指数5位,精度10位
float32 单精度浮点数:32位,正负号1位,指数8位,精度23位
float64或float 双精度浮点数:64位,正负号1位,指数11位,精度52位
complex64 复数,分别用两个32位浮点数表示实部和虚部
complex128或complex 复数,分别用两个64位浮点数表示实部和虚部

NumPy类型转换方式如下:

>>> float64(42) 
  42.0 
>>> int8(42.0) 
  42 
>>> bool(42) 
  True 
>>> bool(42.0) 
  True 
>>> float(True) 
  1.0

许多函数的参数中可以指定参数的类型,当然,这个类型参数是可选的。如下:

>>> arange(7, dtype=uint16) 
  array([0, 1, 2, 3, 4, 5, 6], dtype=uint16)

输出数组

当输出一个数组时,NumPy以特定的布局用类似嵌套列表的形式显示:

  • 第一行从左到右输出
  • 每行依次自上而下输出
  • 每个切片通过一个空行与下一个隔开
  • 一维数组被打印成行,二维数组成矩阵,三维数组成矩阵列表。 
>>> a = arange(6)             # 1d array 
>>> print a 
  [0 1 2 3 4 5] 
  
>>> b = arange(12).reshape(4,3)      # 2d array 
>>> print b 
  [[ 0 1 2] 
  [ 3 4 5] 
  [ 6 7 8] 
  [ 9 10 11]]
  
>>> c = arange(24).reshape(2,3,4)     # 3d array 
>>> print c 
  [[[ 0 1 2 3] 
  [ 4 5 6 7] 
  [ 8 9 10 11]] 

  
  [[12 13 14 15] 
  [16 17 18 19] 
  [20 21 22 23]]]

 reshape将在下一篇文章中介绍 

如果一个数组太长,则NumPy自动省略中间部分而只打印两端的数据:

 

>>> print arange(10000) 
 [  0  1  2 ..., 9997 9998 9999] 

  
>>> print arange(10000).reshape(100,100) 

 [[  0  1  2 ...,  97  98  99] 

  [ 100 101 102 ..., 197 198 199] 

  [ 200 201 202 ..., 297 298 299] 

  ..., 

  [9700 9701 9702 ..., 9797 9798 9799] 

  [9800 9801 9802 ..., 9897 9898 9899] 

  [9900 9901 9902 ..., 9997 9998 9999]]

可通过设置printoptions参数来禁用NumPy的这种行为并强制打印整个数组。

set_printoptions(threshold='nan')

这样,输出时数组的所有元素都会显示出来。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现超简单端口转发的方法
Mar 13 Python
Python使用cx_Oracle调用Oracle存储过程的方法示例
Oct 07 Python
Python代码实现KNN算法
Dec 20 Python
flask中主动抛出异常及统一异常处理代码示例
Jan 18 Python
python提取图像的名字*.jpg到txt文本的方法
May 10 Python
python实现扫描ip地址的小程序
Apr 16 Python
解析pip安装第三方库但PyCharm中却无法识别的问题及PyCharm安装第三方库的方法教程
Mar 10 Python
python如何进行矩阵运算
Jun 05 Python
Python基于正则表达式实现计算器功能
Jul 13 Python
python操作微信自动发消息的实现(微信聊天机器人)
Jul 14 Python
Flask缓存静态文件的具体方法
Aug 02 Python
matplotlib绘制鼠标的十字光标的实现(内置方式)
Jan 06 Python
Python脚本获取操作系统版本信息
Dec 17 #Python
详解python中xlrd包的安装与处理Excel表格
Dec 16 #Python
详解python开发环境搭建
Dec 16 #Python
python制作爬虫爬取京东商品评论教程
Dec 16 #Python
python用模块zlib压缩与解压字符串和文件的方法
Dec 16 #Python
Python用UUID库生成唯一ID的方法示例
Dec 15 #Python
python常见的格式化输出小结
Dec 15 #Python
You might like
ThinkPHP中的关联模型注意点
2014/06/16 PHP
thinkphp5框架API token身份验证功能示例
2019/05/21 PHP
JQuery解析HTML、JSON和XML实例详解
2014/03/29 Javascript
javascript实现浏览器窗口传递参数的方法
2014/09/03 Javascript
JavaScript 实现打印,打印预览,打印设置
2014/12/30 Javascript
每天一篇javascript学习小结(基础知识)
2015/11/10 Javascript
JavaScript iframe数据共享接口实现方法
2016/01/06 Javascript
JavaScript代码实现左右上下自动晃动自动移动
2016/04/08 Javascript
Node.js 文件夹目录结构创建实例代码
2016/07/08 Javascript
AngularJS ng-bind 指令简单实现
2016/07/30 Javascript
switch语句的妙用(必看篇)
2016/10/03 Javascript
bootstrap suggest搜索建议插件使用详解
2017/03/25 Javascript
vue下history模式刷新后404错误解决方法
2018/08/18 Javascript
JavaScript监听触摸事件代码实例
2019/12/30 Javascript
vuex Module将 store 分割成模块的操作
2020/12/07 Vue.js
JavaScript 防盗链的原理以及破解方法
2020/12/29 Javascript
原生js实现九宫格拖拽换位
2021/01/26 Javascript
[03:17]2014DOTA2 国际邀请赛中国区预选赛 四强专访
2014/05/23 DOTA
浅谈python函数之作用域(python3.5)
2017/10/27 Python
总结python中pass的作用
2019/02/27 Python
pyqt5利用pyqtDesigner实现登录界面
2019/03/28 Python
Python 类属性与实例属性,类对象与实例对象用法分析
2019/09/20 Python
学习Python爬虫的几点建议
2020/08/05 Python
李维斯牛仔裤英国官方网站:Levi’s英国
2019/10/10 全球购物
优秀的茶餐厅创业计划书
2014/01/03 职场文书
2014年五一促销活动方案
2014/03/09 职场文书
学校消防安全责任书
2014/07/23 职场文书
班子四风对照检查材料
2014/08/21 职场文书
德育标兵事迹材料
2014/08/24 职场文书
大学生实习证明范文(5篇)
2014/09/18 职场文书
晋江市人民政府党组群众路线教育实践活动整改方案
2014/10/25 职场文书
2016年国培心得体会及反思
2016/01/13 职场文书
python自然语言处理之字典树知识总结
2021/04/25 Python
详解SpringBoot异常处理流程及原理
2021/06/21 Java/Android
mysql中varchar类型的日期进行比较、排序等操作的实现
2021/11/17 MySQL
Python实现批量将文件复制到新的目录中再修改名称
2022/04/12 Python