TensorFlow中如何确定张量的形状实例


Posted in Python onJune 23, 2020

我们可以使用tf.shape()获取某张量的形状张量。

import tensorflow as tf
x = tf.reshape(tf.range(1000), [10, 10, 10])
sess = tf.Session()
sess.run(tf.shape(x))
 
Out[1]: array([10, 10, 10])

我们可以使用tf.shape()在计算图中确定改变张量的形状。

high = tf.shape(x)[0] // 2
width = tf.shape(x)[1] * 2
x_reshape = tf.reshape(x, [high, width, -1])
sess.run(tf.shape(x_reshape))
 
Out: array([ 5, 20, 10])

我们可以使用tf.shape_n()在计算图中得到若干个张量的形状。

y = tf.reshape(tf.range(504), [7,8,9])
sess.run(tf.shape_n([x, y]))
 
Out: [array([10, 10, 10]), array([7, 8, 9])]

我们可以使用tf.size()获取张量的元素个数。

sess.run([tf.size(x), tf.size(y)])

Out: [1000, 504]

tensor.get_shape()或者tensor.shape是无法在计算图中用于确定张量的形状。

In [20]: x.get_shape()
Out[20]: TensorShape([Dimension(10), Dimension(10), Dimension(10)])
 
In [21]: x.get_shape()[0]
Out[21]: Dimension(10)
 
In [22]: type(x.get_shape()[0])
Out[22]: tensorflow.python.framework.tensor_shape.Dimension
 
In [23]: x.get_shape()
Out[23]: TensorShape([Dimension(10), Dimension(10), Dimension(10)])
 
In [24]: sess.run(x.get_shape())
---------------------------------------------------------------------------
TypeError     Traceback (most recent call last)
~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in __init__(self, fetches, contraction_fn)
 299  self._unique_fetches.append(ops.get_default_graph().as_graph_element(
--> 300  fetch, allow_tensor=True, allow_operation=True))
 301 except TypeError as e:
 
~\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in as_graph_element(self, obj, allow_tensor, allow_operation)
 3477 with self._lock:
-> 3478 return self._as_graph_element_locked(obj, allow_tensor, allow_operation)
 3479
 
~\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in _as_graph_element_locked(self, obj, allow_tensor, allow_operation)
 3566 raise TypeError("Can not convert a %s into a %s." % (type(obj).__name__,
-> 3567        types_str))
 3568
 
TypeError: Can not convert a TensorShapeV1 into a Tensor or Operation.
 
During handling of the above exception, another exception occurred:
 
TypeError     Traceback (most recent call last)
<ipython-input-24-de007c69e003> in <module>
----> 1 sess.run(x.get_shape())
 
~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
 927 try:
 928 result = self._run(None, fetches, feed_dict, options_ptr,
--> 929    run_metadata_ptr)
 930 if run_metadata:
 931  proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
 
~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
 1135 # Create a fetch handler to take care of the structure of fetches.
 1136 fetch_handler = _FetchHandler(
-> 1137  self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles)
 1138
 1139 # Run request and get response.
 
~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in __init__(self, graph, fetches, feeds, feed_handles)
 469 """
 470 with graph.as_default():
--> 471 self._fetch_mapper = _FetchMapper.for_fetch(fetches)
 472 self._fetches = []
 473 self._targets = []
~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in for_fetch(fetch)
 269  if isinstance(fetch, tensor_type):
 270  fetches, contraction_fn = fetch_fn(fetch)
--> 271  return _ElementFetchMapper(fetches, contraction_fn)
 272 # Did not find anything.
 273 raise TypeError('Fetch argument %r has invalid type %r' % (fetch,
~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in __init__(self, fetches, contraction_fn)
 302  raise TypeError('Fetch argument %r has invalid type %r, '
 303    'must be a string or Tensor. (%s)' %
--> 304    (fetch, type(fetch), str(e)))
 305 except ValueError as e:
 306  raise ValueError('Fetch argument %r cannot be interpreted as a '
TypeError: Fetch argument TensorShape([Dimension(10), Dimension(10), Dimension(10)]) has invalid type <class 'tensorflow.python.framework.tensor_shape.TensorShapeV1'>, must be a string or Tensor. (Can not convert a TensorShapeV1 into a Tensor or Operation.)

我们可以使用tf.rank()来确定张量的秩。tf.rank()会返回一个代表张量秩的张量,可直接在计算图中使用。

In [25]: tf.rank(x)
Out[25]: <tf.Tensor 'Rank:0' shape=() dtype=int32>
 
In [26]: sess.run(tf.rank(x))
Out[26]: 3

补充知识:tensorflow循环改变tensor的值

使用tf.concat()实现4维tensor的循环赋值

alist=[[[[1,1,1],[2,2,2],[3,3,3]],[[4,4,4],[5,5,5],[6,6,6]]],[[[7,7,7],[8,8,8],[9,9,9]],[[10,10,10],[11,11,11],[12,12,12]]]] #2,2,3,3-n,c,h,w
kenel=(np.asarray(alist)*2).tolist()
print(kenel)
inputs=tf.constant(alist,dtype=tf.float32)
kenel=tf.constant(kenel,dtype=tf.float32)
inputs=tf.transpose(inputs,[0,2,3,1]) #n,h,w,c
kenel=tf.transpose(kenel,[0,2,3,1]) #n,h,w,c
uints=inputs.get_shape()
h=int(uints[1])
w=int(uints[2])
encoder_output=[]
for b in range(int(uints[0])):
 encoder_output_c=[]
 for c in range(int(uints[-1])):
  one_channel_in = inputs[b, :, :, c]
  one_channel_in = tf.reshape(one_channel_in, [1, h, w, 1])
  one_channel_kernel = kenel[b, :, :, c]
  one_channel_kernel = tf.reshape(one_channel_kernel, [h, w, 1, 1])
  encoder_output_cc = tf.nn.conv2d(input=one_channel_in, filter=one_channel_kernel, strides=[1, 1, 1, 1], padding="SAME")
  if c==0:
   encoder_output_c=encoder_output_cc
  else:
   encoder_output_c=tf.concat([encoder_output_c,encoder_output_cc],axis=3)

 if b==0:
  encoder_output=encoder_output_c
 else:
  encoder_output = tf.concat([encoder_output, encoder_output_c], axis=0)

with tf.Session() as sess:
 print(sess.run(tf.transpose(encoder_output,[0,3,1,2])))
 print(encoder_output.get_shape())

输出:

[[[[ 32. 48. 32.]
 [ 56. 84. 56.]
 [ 32. 48. 32.]]

 [[ 200. 300. 200.]
 [ 308. 462. 308.]
 [ 200. 300. 200.]]]


 [[[ 512. 768. 512.]
 [ 776. 1164. 776.]
 [ 512. 768. 512.]]

 [[ 968. 1452. 968.]
 [1460. 2190. 1460.]
 [ 968. 1452. 968.]]]]
(2, 3, 3, 2)

以上这篇TensorFlow中如何确定张量的形状实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python中实现定制类的特殊方法总结
Sep 28 Python
Python使用matplotlib绘制动画的方法
May 20 Python
Python实现Windows上气泡提醒效果的方法
Jun 03 Python
python压缩文件夹内所有文件为zip文件的方法
Jun 20 Python
python不换行之end=与逗号的意思及用途
Nov 21 Python
Python3 queue队列模块详细介绍
Jan 05 Python
selenium+python设置爬虫代理IP的方法
Nov 29 Python
Python文件操作中进行字符串替换的方法(保存到新文件/当前文件)
Jun 28 Python
Python生成个性签名图片获取GUI过程解析
Dec 16 Python
Python日志syslog使用原理详解
Feb 18 Python
python+opencv边缘提取与各函数参数解析
Mar 09 Python
Pandas直接读取sql脚本的方法
Jan 21 Python
Python docutils文档编译过程方法解析
Jun 23 #Python
python3的pip路径在哪
Jun 23 #Python
Python错误的处理方法
Jun 23 #Python
python文件读取失败怎么处理
Jun 23 #Python
使用tensorflow根据输入更改tensor shape
Jun 23 #Python
pytorch 计算ConvTranspose1d输出特征大小方式
Jun 23 #Python
Android Q之气泡弹窗的实现示例
Jun 23 #Python
You might like
海贼王:最美的悬赏令!
2020/03/02 日漫
附件名前加网站名
2008/03/23 PHP
实现获取http内容的php函数分享
2014/02/16 PHP
新浪SAE云平台下使用codeigniter的数据库配置
2014/06/12 PHP
服务器上配置PHP运行环境教程
2015/02/12 PHP
通过PHP简单实例介绍文件上传
2015/12/16 PHP
PHP7下协程的实现方法详解
2017/12/17 PHP
用正则获取指定路径文件的名称
2007/02/27 Javascript
javascript中删除指定数组中指定的元素的代码
2011/02/12 Javascript
简略说明Javascript中的= =(等于)与= = =(全等于)区别
2013/04/16 Javascript
通过location.replace禁止浏览器后退防止重复提交
2014/09/04 Javascript
Node.js实现批量去除BOM文件头
2014/12/20 Javascript
使用jQuery实现返回顶部
2015/01/26 Javascript
AngularJS基础学习笔记之简单介绍
2015/05/10 Javascript
轻松实现js弹框显示选项
2016/09/13 Javascript
纯JavaScript 实现flappy bird小游戏实例代码
2016/09/27 Javascript
jQuery绑定事件的四种方式介绍
2016/10/31 Javascript
vue子父组件通信的实现代码
2017/07/09 Javascript
vue二级路由设置方法
2018/02/09 Javascript
利用vscode调试编译后的js代码详解
2018/05/14 Javascript
详解小程序input框失焦事件在提交事件前的处理
2019/05/05 Javascript
vue 移动端注入骨架屏的配置方法
2019/06/25 Javascript
js 图片懒加载的实现
2020/10/21 Javascript
[01:30]2016国际邀请赛中国区预选赛神秘商店火爆开启
2016/06/26 DOTA
基于python实现学生管理系统
2018/10/17 Python
Python3爬虫爬取英雄联盟高清桌面壁纸功能示例【基于Scrapy框架】
2018/12/05 Python
美国最大的网上冲印店:Shutterfly
2017/01/01 全球购物
英国时尚泳装品牌:Maru Swimwear
2019/10/06 全球购物
JSF界面控制层技术
2013/06/17 面试题
员工拓展培训方案
2014/02/15 职场文书
元旦文艺汇演主持词
2014/03/26 职场文书
医院信息公开实施方案
2014/05/09 职场文书
2015年采购部工作总结
2015/04/23 职场文书
情感电台广播稿
2015/08/18 职场文书
【DOTA2】半决赛强强对话~ PSG LGD vs EHOME - DPC 2022 CN REGIONAL FINALS WINTER
2022/04/02 DOTA
Nginx 匹配方式
2022/05/15 Servers