python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)


Posted in Python onDecember 10, 2020

图像素描特效

图像素描特效主要经过以下几个步骤:

调用cv.cvtColor()函数将彩色图像灰度化处理;
通过cv.GaussianBlur()函数实现高斯滤波降噪;
边缘检测采用Canny算子实现;
最后通过cv.threshold()反二进制阈值化处理实现素描特效。

#coding:utf-8
import cv2 as cv
import numpy as np

#读取原始图像
img = cv.imread('d:/paojie.png')

#图像灰度处理
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)

#高斯滤波降噪
gaussian = cv.GaussianBlur(gray, (5,5), 0)
 
#Canny算子
canny = cv.Canny(gaussian, 50, 150)

#阈值化处理
ret, result = cv.threshold(canny, 0, 255, cv.THRESH_BINARY_INV+cv.THRESH_OTSU)

#显示图像
#cv.imshow('src', img)
#cv.imshow('result', result)
cv.imshow('result',np.vstack((gray,result)))
cv.waitKey()
cv.destroyAllWindows()

图像素描特效展示

python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

图像怀旧特效

怀旧特效是将图像的RGB三个分量分别按照一定比例进行处理的结果,其怀旧公式如下所示:

python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

#coding:utf-8
import cv2 as cv
import numpy as np

#读取原始图像
img = cv.imread('d:/paojie.png')

#获取图像行和列
rows, cols = img.shape[:2]

#新建目标图像
dst = np.zeros((rows, cols, 3), dtype="uint8")

#图像怀旧特效
for i in range(rows):
  for j in range(cols):
    B = 0.272*img[i,j][2] + 0.534*img[i,j][1] + 0.131*img[i,j][0]
    G = 0.349*img[i,j][2] + 0.686*img[i,j][1] + 0.168*img[i,j][0]
    R = 0.393*img[i,j][2] + 0.769*img[i,j][1] + 0.189*img[i,j][0]
    if B>255:
      B = 255
    if G>255:
      G = 255
    if R>255:
      R = 255
    dst[i,j] = np.uint8((B, G, R))
    
#显示图像
cv.imshow('result',np.vstack((img,dst)))
cv.waitKey()
cv.destroyAllWindows()

图像怀旧特效展示

python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

图像光照特效

图像光照特效是指图像存在一个类似于灯光的光晕特效,图像像素值围绕光照中心点呈圆形范围内的增强。
python实现代码主要是通过双层循环遍历图像的各像素点,寻找图像的中心点,再通过计算当前点到光照中心的距离(平面坐标系中两点之间的距离),判断该距离与图像中心圆半径的大小关系,中心圆范围内的图像灰度值增强,范围外的图像灰度值保留,并结合边界范围判断生成最终的光照效果。

#coding:utf-8
import cv2 as cv
import math
import numpy as np

#读取原始图像
img = cv.imread('d:/paojie.png')

#获取图像行和列
rows, cols = img.shape[:2]

#设置中心点和光照半径
centerX = rows / 2 - 20
centerY = cols / 2 + 20
radius = min(centerX, centerY)

#设置光照强度
strength = 100

#新建目标图像
dst = np.zeros((rows, cols, 3), dtype="uint8")

#图像光照特效
for i in range(rows):
  for j in range(cols):
    #计算当前点到光照中心距离(平面坐标系中两点之间的距离)
    distance = math.pow((centerY-j), 2) + math.pow((centerX-i), 2)
    #获取原始图像
    B = img[i,j][0]
    G = img[i,j][1]
    R = img[i,j][2]
    if (distance < radius * radius):
      #按照距离大小计算增强的光照值
      result = (int)(strength*( 1.0 - math.sqrt(distance) / radius ))
      B = img[i,j][0] + result
      G = img[i,j][1] + result
      R = img[i,j][2] + result
      #判断边界 防止越界
      B = min(255, max(0, B))
      G = min(255, max(0, G))
      R = min(255, max(0, R))
      dst[i,j] = np.uint8((B, G, R))
    else:
      dst[i,j] = np.uint8((B, G, R))
    
#显示图像
cv.imshow('result',np.vstack((img,dst)))
cv.waitKey()
cv.destroyAllWindows()

图像光照特效展示

python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

图像流年特效

流年是用来形容如水般流逝的光阴或年华,图像处理中特指将原图像转换为具有时代感或岁月沉淀的特效。python实现代码如下,它将原始图像的蓝色(B)通道的像素值开根号,再乘以一个权重参数,产生最终的流年效果。

#coding:utf-8
import cv2 as cv
import math
import numpy as np

#读取原始图像
img = cv.imread('d:/paojie.png')

#获取图像行和列
rows, cols = img.shape[:2]

#新建目标图像
dst = np.zeros((rows, cols, 3), dtype="uint8")

#图像流年特效
for i in range(rows):
  for j in range(cols):
    #B通道的数值开平方乘以参数12
    B = math.sqrt(img[i,j][0]) * 12
    G = img[i,j][1]
    R = img[i,j][2]
    if B>255:
      B = 255
    dst[i,j] = np.uint8((B, G, R))
    
#显示图像
cv.imshow('result',np.vstack((img,dst)))
cv.waitKey()
cv.destroyAllWindows()

图像流年特效展示

python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

图像滤镜特效

滤镜主要是用来实现图像的各种特殊效果,它在Photoshop中具有非常神奇的作用。滤镜通常需要同通道、图层等联合使用,才能取得最佳艺术效果。本小节将讲述一种基于颜色查找表(Look up Table)的滤镜处理方法,它通过将每一个原始颜色进行转换之后得到新的颜色。比如,原始图像的某像素点为红色(R-255, G-0, B-0),进行转换之后变为绿色(R-0, G-255, B-0),之后所有是红色的地方都会被自动转换为绿色,而颜色查找表就是将所有的颜色进行一次(矩阵)转换,很多的滤镜功能就是提供了这么一个转换的矩阵,在原始色彩的基础上进行颜色的转换。
假设现在存在一张新的滤镜颜色查找表,如图所示,它是一张512×512大小,包含各像素颜色分布的图像。下面这张图片另存为本地,即可直接用于图像滤镜处理。

python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

#coding:utf-8
import cv2 as cv 
import numpy as np

#获取滤镜颜色
def getBGR(img, table, i, j):
  #获取图像颜色
  b, g, r = img[i][j]
  #计算标准颜色表中颜色的位置坐标
  x = int(g/4 + int(b/32) * 63)
  y = int(r/4 + int((b%32) / 4) * 63)
  #返回滤镜颜色表中对应的颜色
  return lj_map[x][y]

#读取原始图像
img = cv.imread('d:/paojie.png')
lj_map = cv.imread('lvjing.png')

#获取图像行和列
rows, cols = img.shape[:2]

#新建目标图像
dst = np.zeros((rows, cols, 3), dtype="uint8")

#循环设置滤镜颜色
for i in range(rows):
  for j in range(cols):
    dst[i][j] = getBGR(img, lj_map, i, j)
    
#显示图像
cv.imshow('result',np.vstack((img,dst)))

cv.waitKey()
cv.destroyAllWindows()

图像滤镜特效展示

python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

以上就是python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)的详细内容,更多关于python opencv图像处理的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python下的Mysql模块MySQLdb安装详解
Apr 09 Python
跟老齐学Python之做一个小游戏
Sep 28 Python
python实现根据月份和日期得到星座的方法
Mar 27 Python
利用Python命令行传递实例化对象的方法
Nov 02 Python
python数据处理实战(必看篇)
Jun 11 Python
Python初学时购物车程序练习实例(推荐)
Aug 08 Python
python实现Floyd算法
Jan 03 Python
使用Python爬了4400条淘宝商品数据,竟发现了这些“潜规则”
Mar 23 Python
Python实现全排列的打印
Aug 18 Python
Python下载网易云歌单歌曲的示例代码
Aug 12 Python
如何使用PyCharm引入需要使用的包的方法
Sep 22 Python
Anaconda安装pytorch及配置PyCharm 2021环境
Jun 04 Python
python 实现的IP 存活扫描脚本
Dec 10 #Python
class类在python中获取金融数据的实例方法
Dec 10 #Python
Python制作简单的剪刀石头布游戏
Dec 10 #Python
python给list排序的简单方法
Dec 10 #Python
详解java调用python的几种用法(看这篇就够了)
Dec 10 #Python
Python利用imshow制作自定义渐变填充柱状图(colorbar)
Dec 10 #Python
详解Python GUI编程之PyQt5入门到实战
Dec 10 #Python
You might like
php产生随机数的两种方法实例代码 输出随机IP
2011/04/08 PHP
PHP 中关于ord($str)&amp;gt;0x80的详细说明
2012/09/23 PHP
PHP获取时间排除周六、周日的两个方法
2014/06/30 PHP
Mac系统下安装PHP Xdebug
2018/03/30 PHP
PHP以json或xml格式返回请求数据的方法
2018/05/31 PHP
记Laravel调用Gin接口调用formData上传文件的实现方法
2019/12/12 PHP
JavaScript实际应用:innerHTMl和确认提示的使用
2006/06/22 Javascript
js获取当前日期代码适用于网页头部
2013/06/27 Javascript
JS可以控制样式的名称写法一览
2014/01/16 Javascript
静态页面html中跳转传值的JS处理技巧
2016/06/22 Javascript
RequireJS 依赖关系的实例(推荐)
2017/01/21 Javascript
JS实现移动端按首字母检索城市列表附源码下载
2017/07/05 Javascript
微信小程序实现收藏与取消收藏切换图片功能
2018/08/03 Javascript
node学习笔记之读写文件与开启第一个web服务器操作示例
2019/05/29 Javascript
微信小程序实现折线图的示例代码
2019/06/07 Javascript
layui 对table中的数据进行转义的实例
2019/09/12 Javascript
Vue 的双向绑定原理与用法揭秘
2020/05/06 Javascript
[01:57]2016完美“圣”典风云人物:国士无双专访
2016/12/04 DOTA
python socket网络编程步骤详解(socket套接字使用)
2013/12/06 Python
python字典get()方法用法分析
2015/04/17 Python
Python中特殊函数集锦
2015/07/27 Python
Python函数的周期性执行实现方法
2016/08/13 Python
python3使用pyqt5制作一个超简单浏览器的实例
2017/10/19 Python
如何运行.ipynb文件的图文讲解
2019/06/27 Python
python 实现多线程下载m3u8格式视频并使用fmmpeg合并
2019/11/15 Python
Python爬虫入门有哪些基础知识点
2020/06/02 Python
一款利用纯css3实现的win8加载动画的实例分析
2014/12/11 HTML / CSS
向全球直邮输送天然健康产品:iHerb.com
2020/05/03 全球购物
澳大利亚领先的女性运动服品牌:Lorna Jane
2020/06/19 全球购物
计算 s=(x*y)1/2,用两个宏定义来实现
2016/08/11 面试题
维修工先进事迹
2014/05/29 职场文书
企业文化标语口号
2014/06/09 职场文书
公司离职证明样本
2014/09/13 职场文书
教师学习党的群众路线教育实践活动心得体会
2014/10/31 职场文书
上课说话检讨书500字
2014/11/01 职场文书
城南旧事读书笔记
2015/06/29 职场文书