python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)


Posted in Python onDecember 10, 2020

图像素描特效

图像素描特效主要经过以下几个步骤:

调用cv.cvtColor()函数将彩色图像灰度化处理;
通过cv.GaussianBlur()函数实现高斯滤波降噪;
边缘检测采用Canny算子实现;
最后通过cv.threshold()反二进制阈值化处理实现素描特效。

#coding:utf-8
import cv2 as cv
import numpy as np

#读取原始图像
img = cv.imread('d:/paojie.png')

#图像灰度处理
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)

#高斯滤波降噪
gaussian = cv.GaussianBlur(gray, (5,5), 0)
 
#Canny算子
canny = cv.Canny(gaussian, 50, 150)

#阈值化处理
ret, result = cv.threshold(canny, 0, 255, cv.THRESH_BINARY_INV+cv.THRESH_OTSU)

#显示图像
#cv.imshow('src', img)
#cv.imshow('result', result)
cv.imshow('result',np.vstack((gray,result)))
cv.waitKey()
cv.destroyAllWindows()

图像素描特效展示

python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

图像怀旧特效

怀旧特效是将图像的RGB三个分量分别按照一定比例进行处理的结果,其怀旧公式如下所示:

python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

#coding:utf-8
import cv2 as cv
import numpy as np

#读取原始图像
img = cv.imread('d:/paojie.png')

#获取图像行和列
rows, cols = img.shape[:2]

#新建目标图像
dst = np.zeros((rows, cols, 3), dtype="uint8")

#图像怀旧特效
for i in range(rows):
  for j in range(cols):
    B = 0.272*img[i,j][2] + 0.534*img[i,j][1] + 0.131*img[i,j][0]
    G = 0.349*img[i,j][2] + 0.686*img[i,j][1] + 0.168*img[i,j][0]
    R = 0.393*img[i,j][2] + 0.769*img[i,j][1] + 0.189*img[i,j][0]
    if B>255:
      B = 255
    if G>255:
      G = 255
    if R>255:
      R = 255
    dst[i,j] = np.uint8((B, G, R))
    
#显示图像
cv.imshow('result',np.vstack((img,dst)))
cv.waitKey()
cv.destroyAllWindows()

图像怀旧特效展示

python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

图像光照特效

图像光照特效是指图像存在一个类似于灯光的光晕特效,图像像素值围绕光照中心点呈圆形范围内的增强。
python实现代码主要是通过双层循环遍历图像的各像素点,寻找图像的中心点,再通过计算当前点到光照中心的距离(平面坐标系中两点之间的距离),判断该距离与图像中心圆半径的大小关系,中心圆范围内的图像灰度值增强,范围外的图像灰度值保留,并结合边界范围判断生成最终的光照效果。

#coding:utf-8
import cv2 as cv
import math
import numpy as np

#读取原始图像
img = cv.imread('d:/paojie.png')

#获取图像行和列
rows, cols = img.shape[:2]

#设置中心点和光照半径
centerX = rows / 2 - 20
centerY = cols / 2 + 20
radius = min(centerX, centerY)

#设置光照强度
strength = 100

#新建目标图像
dst = np.zeros((rows, cols, 3), dtype="uint8")

#图像光照特效
for i in range(rows):
  for j in range(cols):
    #计算当前点到光照中心距离(平面坐标系中两点之间的距离)
    distance = math.pow((centerY-j), 2) + math.pow((centerX-i), 2)
    #获取原始图像
    B = img[i,j][0]
    G = img[i,j][1]
    R = img[i,j][2]
    if (distance < radius * radius):
      #按照距离大小计算增强的光照值
      result = (int)(strength*( 1.0 - math.sqrt(distance) / radius ))
      B = img[i,j][0] + result
      G = img[i,j][1] + result
      R = img[i,j][2] + result
      #判断边界 防止越界
      B = min(255, max(0, B))
      G = min(255, max(0, G))
      R = min(255, max(0, R))
      dst[i,j] = np.uint8((B, G, R))
    else:
      dst[i,j] = np.uint8((B, G, R))
    
#显示图像
cv.imshow('result',np.vstack((img,dst)))
cv.waitKey()
cv.destroyAllWindows()

图像光照特效展示

python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

图像流年特效

流年是用来形容如水般流逝的光阴或年华,图像处理中特指将原图像转换为具有时代感或岁月沉淀的特效。python实现代码如下,它将原始图像的蓝色(B)通道的像素值开根号,再乘以一个权重参数,产生最终的流年效果。

#coding:utf-8
import cv2 as cv
import math
import numpy as np

#读取原始图像
img = cv.imread('d:/paojie.png')

#获取图像行和列
rows, cols = img.shape[:2]

#新建目标图像
dst = np.zeros((rows, cols, 3), dtype="uint8")

#图像流年特效
for i in range(rows):
  for j in range(cols):
    #B通道的数值开平方乘以参数12
    B = math.sqrt(img[i,j][0]) * 12
    G = img[i,j][1]
    R = img[i,j][2]
    if B>255:
      B = 255
    dst[i,j] = np.uint8((B, G, R))
    
#显示图像
cv.imshow('result',np.vstack((img,dst)))
cv.waitKey()
cv.destroyAllWindows()

图像流年特效展示

python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

图像滤镜特效

滤镜主要是用来实现图像的各种特殊效果,它在Photoshop中具有非常神奇的作用。滤镜通常需要同通道、图层等联合使用,才能取得最佳艺术效果。本小节将讲述一种基于颜色查找表(Look up Table)的滤镜处理方法,它通过将每一个原始颜色进行转换之后得到新的颜色。比如,原始图像的某像素点为红色(R-255, G-0, B-0),进行转换之后变为绿色(R-0, G-255, B-0),之后所有是红色的地方都会被自动转换为绿色,而颜色查找表就是将所有的颜色进行一次(矩阵)转换,很多的滤镜功能就是提供了这么一个转换的矩阵,在原始色彩的基础上进行颜色的转换。
假设现在存在一张新的滤镜颜色查找表,如图所示,它是一张512×512大小,包含各像素颜色分布的图像。下面这张图片另存为本地,即可直接用于图像滤镜处理。

python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

#coding:utf-8
import cv2 as cv 
import numpy as np

#获取滤镜颜色
def getBGR(img, table, i, j):
  #获取图像颜色
  b, g, r = img[i][j]
  #计算标准颜色表中颜色的位置坐标
  x = int(g/4 + int(b/32) * 63)
  y = int(r/4 + int((b%32) / 4) * 63)
  #返回滤镜颜色表中对应的颜色
  return lj_map[x][y]

#读取原始图像
img = cv.imread('d:/paojie.png')
lj_map = cv.imread('lvjing.png')

#获取图像行和列
rows, cols = img.shape[:2]

#新建目标图像
dst = np.zeros((rows, cols, 3), dtype="uint8")

#循环设置滤镜颜色
for i in range(rows):
  for j in range(cols):
    dst[i][j] = getBGR(img, lj_map, i, j)
    
#显示图像
cv.imshow('result',np.vstack((img,dst)))

cv.waitKey()
cv.destroyAllWindows()

图像滤镜特效展示

python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

以上就是python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)的详细内容,更多关于python opencv图像处理的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python调用机器喇叭发出蜂鸣声(Beep)的方法
Mar 23 Python
python关闭windows进程的方法
Apr 18 Python
Collatz 序列、逗号代码、字符图网格实例
Jun 22 Python
python+pyqt实现右下角弹出框
Oct 26 Python
Python获取二维矩阵每列最大值的方法
Apr 03 Python
浅谈Python脚本开头及导包注释自动添加方法
Oct 27 Python
解决新django中的path不能使用正则表达式的问题
Dec 18 Python
Python使用matplotlib绘制Logistic曲线操作示例
Nov 28 Python
在keras下实现多个模型的融合方式
May 23 Python
python中取绝对值简单方法总结
Jul 24 Python
Python HTMLTestRunner如何下载生成报告
Sep 04 Python
Python机器学习之PCA降维算法详解
May 19 Python
python 实现的IP 存活扫描脚本
Dec 10 #Python
class类在python中获取金融数据的实例方法
Dec 10 #Python
Python制作简单的剪刀石头布游戏
Dec 10 #Python
python给list排序的简单方法
Dec 10 #Python
详解java调用python的几种用法(看这篇就够了)
Dec 10 #Python
Python利用imshow制作自定义渐变填充柱状图(colorbar)
Dec 10 #Python
详解Python GUI编程之PyQt5入门到实战
Dec 10 #Python
You might like
php session和cookie使用说明
2010/04/07 PHP
ThinkPHP入库出现两次反斜线转义及数据库类转义的解决方法
2014/11/04 PHP
PHP移动文件指针ftell()、fseek()、rewind()函数总结
2014/11/18 PHP
php判断用户是否手机访问代码
2015/06/08 PHP
php获取微信共享收货地址的方法
2017/12/21 PHP
laravel5.6 框架操作数据 Eloquent ORM用法示例
2020/01/26 PHP
Javascript常考语句107条收集
2010/03/09 Javascript
Jjcarousellite 实现图片列表滚动的简单实例
2013/11/29 Javascript
node.js中的require使用详解
2014/12/15 Javascript
JS获取iframe中marginHeight和marginWidth属性的方法
2015/04/01 Javascript
Node.js和MongoDB实现简单日志分析系统
2015/04/25 Javascript
javascript基础语法学习笔记
2016/01/04 Javascript
从零开始学习Node.js系列教程三:图片上传和显示方法示例
2017/04/13 Javascript
微信小程序自定义toast弹窗效果的实现代码
2018/11/15 Javascript
jQuery选择器之层次选择器用法实例分析
2019/02/19 jQuery
OpenLayers3实现鼠标移动显示坐标
2020/09/25 Javascript
[02:42]DOTA2城市挑战赛收官在即 四强之争风起云涌
2018/06/05 DOTA
import的本质解析
2017/10/30 Python
在Python中分别打印列表中的每一个元素方法
2018/11/07 Python
Python 从subprocess运行的子进程中实时获取输出的例子
2019/08/14 Python
python中 _、__、__xx__()区别及使用场景
2020/06/30 Python
使用HTML5技术开发一个属于自己的超酷颜色选择器
2013/09/22 HTML / CSS
wedgwood加拿大官网:1759年成立的英国国宝级陶瓷餐具品牌
2018/07/17 全球购物
Theflamel意大利:女士奢华服装、鞋子和配件
2020/01/11 全球购物
行政专员工作职责
2013/12/22 职场文书
幼儿园托班开学寄语
2014/01/18 职场文书
司仪主持词两篇
2014/03/22 职场文书
毕业生找工作自荐书
2014/06/30 职场文书
校运动会广播稿(100篇)
2014/09/12 职场文书
女生抽烟检讨书
2014/10/05 职场文书
2016大学生社会实践单位评语
2015/12/01 职场文书
标准发言稿结尾
2019/07/18 职场文书
python cv2图像质量压缩的算法示例
2021/06/04 Python
Java集成swagger文档组件
2021/06/28 Java/Android
浅谈TypeScript 索引签名的理解
2021/10/16 Javascript
golang语言指针操作
2022/04/14 Golang