Python 40行代码实现人脸识别功能


Posted in Python onApril 02, 2017

前言

很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在40行代码以内简单地实现人脸识别。

一点区分

对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。其实,人脸检测解决的问题是确定一张图上有木有人脸,而人脸识别解决的问题是这个脸是谁的。可以说人脸检测是是人识别的前期工作。今天我们要做的是人脸识别。

所用工具

Anaconda 2——Python 2

Dlib

scikit-image

Dlib

对于今天要用到的主要工具,还是有必要多说几句的。Dlib是基于现代C++的一个跨平台通用的框架,作者非常勤奋,一直在保持更新。Dlib内容涵盖机器学习、图像处理、数值算法、数据压缩等等,涉猎甚广。更重要的是,Dlib的文档非常完善,例子非常丰富。就像很多库一样,Dlib也提供了Python的接口,安装非常简单,用pip只需要一句即可:

pip install dlib

上面需要用到的scikit-image同样只是需要这么一句:

pip install scikit-image

注:如果用pip install dlib安装失败的话,那安装起来就比较麻烦了。错误提示很详细,按照错误提示一步步走就行了。

人脸识别

之所以用Dlib来实现人脸识别,是因为它已经替我们做好了绝大部分的工作,我们只需要去调用就行了。Dlib里面有人脸检测器,有训练好的人脸关键点检测器,也有训练好的人脸识别模型。今天我们主要目的是实现,而不是深究原理。感兴趣的同学可以到官网查看源码以及实现的参考文献。今天的例子既然代码不超过40行,其实是没啥难度的。有难度的东西都在源码和论文里。

首先先通过文件树看一下今天需要用到的东西:

Python 40行代码实现人脸识别功能

准备了六个候选人的图片放在candidate-faces文件夹中,然后需要识别的人脸图片test.jpg。我们的工作就是要检测到test.jpg中的人脸,然后判断她到底是候选人中的谁。另外的girl-face-rec.py是我们的python脚本。shape_predictor_68_face_landmarks.dat是已经训练好的人脸关键点检测器。dlib_face_recognition_resnet_model_v1.dat是训练好的ResNet人脸识别模型。ResNet是何凯明在微软的时候提出的深度残差网络,获得了 ImageNet 2015 冠军,通过让网络对残差进行学习,在深度和精度上做到了比
CNN 更加强大。

1. 前期准备

shape_predictor_68_face_landmarks.datdlib_face_recognition_resnet_model_v1.dat都可以在这里找到。不能点击超链接的可以直接输入以下网址:http://dlib.net/files/。

然后准备几个人的人脸图片作为候选人脸,最好是正脸。放到candidate-faces文件夹中。

本文这里准备的是六张图片,如下:

Python 40行代码实现人脸识别功能

她们分别是

Python 40行代码实现人脸识别功能

然后准备四张需要识别的人脸图像,其实一张就够了,这里只是要看看不同的情况:

Python 40行代码实现人脸识别功能

可以看到前两张和候选文件中的本人看起来还是差别不小的,第三张是候选人中的原图,第四张图片微微侧脸,而且右侧有阴影。

2.识别流程

数据准备完毕,接下来就是代码了。识别的大致流程是这样的:

  • 先对候选人进行人脸检测、关键点提取、描述子生成后,把候选人描述子保存起来。
  • 然后对测试人脸进行人脸检测、关键点提取、描述子生成。
  • 最后求测试图像人脸描述子和候选人脸描述子之间的欧氏距离,距离最小者判定为同一个人。

3.代码

代码不做过多解释,因为已经注释的非常完善了。以下是girl-face-rec.py

# -*- coding: UTF-8 -*-
import sys,os,dlib,glob,numpy
from skimage import io
if len(sys.argv) != 5:
 print "请检查参数是否正确"
 exit()
# 1.人脸关键点检测器
predictor_path = sys.argv[1]
# 2.人脸识别模型
face_rec_model_path = sys.argv[2]
# 3.候选人脸文件夹
faces_folder_path = sys.argv[3]
# 4.需识别的人脸
img_path = sys.argv[4]
# 1.加载正脸检测器
detector = dlib.get_frontal_face_detector()
# 2.加载人脸关键点检测器
sp = dlib.shape_predictor(predictor_path)
# 3. 加载人脸识别模型
facerec = dlib.face_recognition_model_v1(face_rec_model_path)
# win = dlib.image_window()
# 候选人脸描述子list
descriptors = []
# 对文件夹下的每一个人脸进行:
# 1.人脸检测
# 2.关键点检测
# 3.描述子提取
for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):
 print("Processing file: {}".format(f))
 img = io.imread(f)
 #win.clear_overlay()
 #win.set_image(img)
 # 1.人脸检测
 dets = detector(img, 1)
 print("Number of faces detected: {}".format(len(dets)))
 for k, d in enumerate(dets): 
  # 2.关键点检测
  shape = sp(img, d)
  # 画出人脸区域和和关键点
  # win.clear_overlay()
  # win.add_overlay(d)
  # win.add_overlay(shape)
  # 3.描述子提取,128D向量
  face_descriptor = facerec.compute_face_descriptor(img, shape)
  # 转换为numpy array
  v = numpy.array(face_descriptor) 
  descriptors.append(v)
# 对需识别人脸进行同样处理
# 提取描述子,不再注释
img = io.imread(img_path)
dets = detector(img, 1)
dist = []
for k, d in enumerate(dets):
 shape = sp(img, d)
 face_descriptor = facerec.compute_face_descriptor(img, shape)
 d_test = numpy.array(face_descriptor) 
 # 计算欧式距离
 for i in descriptors:
  dist_ = numpy.linalg.norm(i-d_test)
  dist.append(dist_)
# 候选人名单
candidate = ['Unknown1','Unknown2','Shishi','Unknown4','Bingbing','Feifei']
# 候选人和距离组成一个dict
c_d = dict(zip(candidate,dist))
cd_sorted = sorted(c_d.iteritems(), key=lambda d:d[1])
print "\n The person is: ",cd_sorted[0][0] 
dlib.hit_enter_to_continue()

4.运行结果

我们在.py所在的文件夹下打开命令行,运行如下命令

python girl-face-rec.py 1.dat 2.dat ./candidate-faecs test1.jpg

由于shape_predictor_68_face_landmarks.datdlib_face_recognition_resnet_model_v1.dat名字实在太长,所以我把它们重命名为1.dat和2.dat。

运行结果如下:

The person is Bingbing。

记忆力不好的同学可以翻上去看看test1.jpg是谁的图片。有兴趣的话可以把四张测试图片都运行下试试。

这里需要说明的是,前三张图输出结果都是非常理想的。但是第四张测试图片的输出结果是候选人4。对比一下两张图片可以很容易发现混淆的原因。

机器毕竟不是人,机器的智能还需要人来提升。

有兴趣的同学可以继续深入研究如何提升识别的准确率。比如每个人的候选图片用多张,然后对比和每个人距离的平均值之类的。全凭自己了。

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,同时也希望多多支持三水点靠木!

Python 相关文章推荐
Python+tkinter使用80行代码实现一个计算器实例
Jan 16 Python
Python科学计算包numpy用法实例详解
Feb 08 Python
Matplotlib中文乱码的3种解决方案
Nov 15 Python
对Python Class之间函数的调用关系详解
Jan 23 Python
pyqt5 使用label控件实时显示时间的实例
Jun 14 Python
关于Flask项目无法使用公网IP访问的解决方式
Nov 19 Python
Pycharm如何运行.py文件的方法步骤
Mar 03 Python
一文弄懂Pytorch的DataLoader, DataSet, Sampler之间的关系
Jul 03 Python
总结Pyinstaller的坑及终极解决方法(小结)
Sep 21 Python
手把手教你从PyCharm安装到激活(最新激活码),亲测有效可激活至2089年
Nov 25 Python
python 如何设置守护进程
Oct 29 Python
Python 实现劳拉游戏的实例代码(四连环、重力四子棋)
Mar 03 Python
Python可变参数用法实例分析
Apr 02 #Python
Python编程实现数学运算求一元二次方程的实根算法示例
Apr 02 #Python
Python中selenium实现文件上传所有方法整理总结
Apr 01 #Python
详解Python多线程Selenium跨浏览器测试
Apr 01 #Python
Python 基础之字符串string详解及实例
Apr 01 #Python
Python中格式化format()方法详解
Apr 01 #Python
Python 中开发pattern的string模板(template) 实例详解
Apr 01 #Python
You might like
基于mysql的bbs设计(二)
2006/10/09 PHP
pw的一个放后门的方法分析
2007/10/08 PHP
PHP中删除变量时unset()和null的区别分析
2011/01/27 PHP
php编写简单的文章发布程序
2015/06/18 PHP
浅谈PHP中关于foreach使用引用变量的坑
2016/11/14 PHP
深入解析Laravel5.5中的包自动发现Package Auto Discovery
2017/09/13 PHP
javascript编程起步(第四课)
2007/02/27 Javascript
用jquery存取照片的具体实现方法
2013/06/30 Javascript
JavaScript操作cookie类实例
2015/03/31 Javascript
不用一句js代码初始化组件
2016/01/27 Javascript
深入理解JQuery循环绑定事件
2016/06/02 Javascript
jQuery禁用快捷键例如禁用F5刷新 禁用右键菜单等的简单实现
2016/08/31 Javascript
DOM操作原生js 的bug,使用jQuery 可以消除的解决方法
2016/09/04 Javascript
前端框架学习总结之Angular、React与Vue的比较详解
2017/03/14 Javascript
详解webpack和webpack-simple中如何引入css文件
2017/06/28 Javascript
Babel 入门教程学习笔记
2018/06/13 Javascript
详解使用jest对vue项目进行单元测试
2018/09/07 Javascript
vue2 中二级路由高亮问题及配置方法
2019/06/10 Javascript
解决angular 使用原生拖拽页面卡顿及表单控件输入延迟问题
2020/04/21 Javascript
JS求解两数之和算法详解
2020/04/28 Javascript
JS实现密码框效果
2020/09/10 Javascript
Python字符串拼接的几种方法整理
2017/08/02 Python
Python使用pyshp库读取shapefile信息的方法
2018/12/29 Python
对python调用RPC接口的实例详解
2019/01/03 Python
Python中的类与类型示例详解
2019/07/10 Python
python 实现快速生成连续、随机字母列表
2019/11/28 Python
Pandas-Cookbook 时间戳处理方式
2019/12/07 Python
Numpy一维线性插值函数的用法
2020/04/22 Python
python函数中将变量名转换成字符串实例
2020/05/11 Python
Python开发入门——迭代的基本使用
2020/09/03 Python
JD Sports马来西亚:英国领先的运动鞋和运动服饰零售商
2018/03/13 全球购物
认识深刻的检讨书
2014/02/16 职场文书
《陈涉世家》教学反思
2014/04/12 职场文书
物理学专业求职信
2014/07/04 职场文书
感恩节寄语2015
2015/03/24 职场文书
聘任合同书
2015/09/21 职场文书