Python图像读写方法对比


Posted in Python onNovember 16, 2020

1  实验标准

因为训练使用的框架是Pytorch,因此读取的实验标准如下:

1、读取分辨率都为1920x1080的5张图片(png格式一张,jpg格式四张)并保存到数组。

2、将读取的数组转换为维度顺序为CxHxW的Pytorch张量,并保存到显存中(我使用GPU训练),其中三个通道的顺序为RGB。

3、记录各个方法在以上操作中所耗费的时间。因为png格式的图片大小差不多是质量有微小差异的jpg格式的10倍,所以数据集通常不会用png来保存,就不比较这两种格式的读取时间差异了。

写入的实验标准如下:

1、将5张1920x1080的5张图像对应的Pytorch张量转换为对应方法可使用的数据类型数组。

2、以jpg格式保存五张图片。

3、记录各个方法保存图片所耗费的时间。

2  实验情况

2.1  cv2

因为有GPU,所以cv2读取图片有两种方式:

1、先把图片都读取为一个numpy数组,再转换成保存在GPU中的pytorch张量。

2、初始化一个保存在GPU中的pytorch张量,然后将每张图直接复制进这个张量中。

第一种方式实验代码如下:

import os, torch
import cv2 as cv 
import numpy as np 
from time import time 
 
read_path = 'D:test'
write_path = 'D:test\\write\\'
 
# cv2读取 1
start_t = time()
imgs = np.zeros([5, 1080, 1920, 3])
for img, i in zip(os.listdir(read_path), range(5)): 
 img = cv.imread(filename=os.path.join(read_path, img))
 imgs[i] = img 
imgs = torch.tensor(imgs).to('cuda')[...,[2,1,0]].permute([0,3,1,2])/255 
print('cv2 读取时间1:', time() - start_t) 
# cv2保存
start_t = time()
imgs = (imgs.permute([0,2,3,1])[...,[2,1,0]]*255).cpu().numpy()
for i in range(imgs.shape[0]): 
 cv.imwrite(write_path + str(i) + '.jpg', imgs[i])
print('cv2 保存时间:', time() - start_t)

 实验结果:

cv2 读取时间1: 0.39693760871887207
cv2 保存时间: 0.3560612201690674

第二种方式实验代码如下:

import os, torch
import cv2 as cv 
import numpy as np 
from time import time 
 
read_path = 'D:test'
write_path = 'D:test\\write\\'
 
 
# cv2读取 2
start_t = time()
imgs = torch.zeros([5, 1080, 1920, 3], device='cuda')
for img, i in zip(os.listdir(read_path), range(5)): 
 img = torch.tensor(cv.imread(filename=os.path.join(read_path, img)), device='cuda')
 imgs[i] = img  
imgs = imgs[...,[2,1,0]].permute([0,3,1,2])/255 
print('cv2 读取时间2:', time() - start_t) 
# cv2保存
start_t = time()
imgs = (imgs.permute([0,2,3,1])[...,[2,1,0]]*255).cpu().numpy()
for i in range(imgs.shape[0]): 
 cv.imwrite(write_path + str(i) + '.jpg', imgs[i])
print('cv2 保存时间:', time() - start_t)

实验结果:

cv2 读取时间2: 0.23636841773986816
cv2 保存时间: 0.3066873550415039

2.2  matplotlib

同样两种读取方式,第一种代码如下:

import os, torch 
import numpy as np
import matplotlib.pyplot as plt 
from time import time 
 
read_path = 'D:test'
write_path = 'D:test\\write\\'
 
# matplotlib 读取 1
start_t = time()
imgs = np.zeros([5, 1080, 1920, 3])
for img, i in zip(os.listdir(read_path), range(5)): 
 img = plt.imread(os.path.join(read_path, img)) 
 imgs[i] = img  
imgs = torch.tensor(imgs).to('cuda').permute([0,3,1,2])/255 
print('matplotlib 读取时间1:', time() - start_t) 
# matplotlib 保存
start_t = time()
imgs = (imgs.permute([0,2,3,1])).cpu().numpy()
for i in range(imgs.shape[0]): 
 plt.imsave(write_path + str(i) + '.jpg', imgs[i])
print('matplotlib 保存时间:', time() - start_t)

实验结果:

matplotlib 读取时间1: 0.45380306243896484
matplotlib 保存时间: 0.768944263458252

第二种方式实验代码:

import os, torch 
import numpy as np
import matplotlib.pyplot as plt 
from time import time 
 
read_path = 'D:test'
write_path = 'D:test\\write\\'
 
# matplotlib 读取 2
start_t = time()
imgs = torch.zeros([5, 1080, 1920, 3], device='cuda')
for img, i in zip(os.listdir(read_path), range(5)): 
 img = torch.tensor(plt.imread(os.path.join(read_path, img)), device='cuda')
 imgs[i] = img  
imgs = imgs.permute([0,3,1,2])/255 
print('matplotlib 读取时间2:', time() - start_t) 
# matplotlib 保存
start_t = time()
imgs = (imgs.permute([0,2,3,1])).cpu().numpy()
for i in range(imgs.shape[0]): 
 plt.imsave(write_path + str(i) + '.jpg', imgs[i])
print('matplotlib 保存时间:', time() - start_t)

实验结果:

matplotlib 读取时间2: 0.2044532299041748
matplotlib 保存时间: 0.4737534523010254

需要注意的是,matplotlib读取png格式图片获取的数组的数值是在[0,1][0,1]范围内的浮点数,而jpg格式图片却是在[0,255][0,255]范围内的整数。所以如果数据集内图片格式不一致,要注意先转换为一致再读取,否则数据集的预处理就麻烦了。

2.3  PIL

PIL的读取与写入并不能直接使用pytorch张量或numpy数组,要先转换为Image类型,所以很麻烦,时间复杂度上肯定也是占下风的,就不实验了。

2.4  torchvision

torchvision提供了直接从pytorch张量保存图片的功能,和上面读取最快的matplotlib的方法结合,代码如下:

import os, torch 
import matplotlib.pyplot as plt 
from time import time 
from torchvision import utils 

read_path = 'D:test'
write_path = 'D:test\\write\\'
 
# matplotlib 读取 2
start_t = time()
imgs = torch.zeros([5, 1080, 1920, 3], device='cuda')
for img, i in zip(os.listdir(read_path), range(5)): 
 img = torch.tensor(plt.imread(os.path.join(read_path, img)), device='cuda')
 imgs[i] = img  
imgs = imgs.permute([0,3,1,2])/255 
print('matplotlib 读取时间2:', time() - start_t) 
# torchvision 保存
start_t = time() 
for i in range(imgs.shape[0]):  
 utils.save_image(imgs[i], write_path + str(i) + '.jpg')
print('torchvision 保存时间:', time() - start_t)

实验结果:

matplotlib 读取时间2: 0.15358829498291016
torchvision 保存时间: 0.14760661125183105

可以看出这两个是最快的读写方法。另外,要让图片的读写尽量不影响训练进程,我们还可以让这两个过程与训练并行。另外,utils.save_image可以将多张图片拼接成一张来保存,具体使用方法如下:

utils.save_image(tensor = imgs,   # 要保存的多张图片张量 shape = [n, C, H, W]
         fp = 'test.jpg',  # 保存路径
         nrow = 5,     # 多图拼接时,每行所占的图片数
         padding = 1,    # 多图拼接时,每张图之间的间距
         normalize = True, # 是否进行规范化,通常输出图像用tanh,所以要用规范化 
         range = (-1,1))  # 规范化的范围

以上就是Python图像读写方法对比的详细内容,更多关于python 图像读写的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python爬虫入门教程之点点美女图片爬虫代码分享
Sep 02 Python
Python中设置变量访问权限的方法
Apr 27 Python
在Python中使用matplotlib模块绘制数据图的示例
May 04 Python
讲解Python的Scrapy爬虫框架使用代理进行采集的方法
Feb 18 Python
Python实现按逗号分隔列表的方法
Oct 23 Python
django session完成状态保持的方法
Nov 27 Python
Python实现获取系统临时目录及临时文件的方法示例
Jun 26 Python
Django框架model模型对象验证实现方法分析
Oct 02 Python
基于python traceback实现异常的获取与处理
Dec 13 Python
Django分组聚合查询实例分享
Apr 29 Python
在python image 中实现安装中文字体
May 16 Python
Python Merge函数原理及用法解析
Sep 16 Python
python3中编码获取网页的实例方法
Nov 16 #Python
Python3中小括号()、中括号[]、花括号{}的区别详解
Nov 15 #Python
Python根据URL地址下载文件并保存至对应目录的实现
Nov 15 #Python
python re的findall和finditer的区别详解
Nov 15 #Python
Python获取android设备cpu和内存占用情况
Nov 15 #Python
Python __slots__的使用方法
Nov 15 #Python
Python descriptor(描述符)的实现
Nov 15 #Python
You might like
PHP学习之字符串比较和查找
2011/04/17 PHP
解决phpcms更换javascript的幻灯片代码调用图片问题
2014/12/26 PHP
PHP开发注意事项总结
2015/02/04 PHP
Prototype Template对象 学习
2009/07/19 Javascript
javascript十个最常用的自定义函数(中文版)
2009/09/07 Javascript
JSON JQUERY模板实现说明
2010/07/03 Javascript
JS图片预加载 JS实现图片预加载应用
2012/12/03 Javascript
JS文本框追加多个下拉框的值的简单实例
2013/07/12 Javascript
extjs中form与grid交互数据(record)的方法
2013/08/29 Javascript
JavaScript显示当然日期和时间即年月日星期和时间
2013/10/29 Javascript
JavaScript观察者模式(经典)
2015/12/09 Javascript
Node.js中JavaScript操作MySQL的常用方法整理
2016/03/01 Javascript
BootStrap下jQuery自动完成的样式调整
2016/05/30 Javascript
JQuery和PHP结合实现动态进度条上传显示
2016/11/23 Javascript
jQuery创建及操作xml格式数据示例
2018/05/26 jQuery
微信小程序实现折叠展开效果
2018/07/19 Javascript
vue富文本框(插入文本、图片、视频)的使用及问题小结
2018/08/17 Javascript
如何使用electron-builder及electron-updater给项目配置自动更新
2018/12/24 Javascript
Angular8 Http拦截器简单使用教程
2019/08/20 Javascript
微信小程序实现禁止分享代码实例
2019/10/19 Javascript
react ant Design手动设置表单的值操作
2020/10/31 Javascript
python利用sklearn包编写决策树源代码
2017/12/21 Python
用python与文件进行交互的方法
2018/03/01 Python
Python使用import导入本地脚本及导入模块的技巧总结
2019/08/07 Python
PyQt+socket实现远程操作服务器的方法示例
2019/08/22 Python
python使用pip安装模块出现ReadTimeoutError: HTTPSConnectionPool的解决方法
2019/10/04 Python
Python处理PDF与CDF实例
2020/02/26 Python
python如何删除列为空的行
2020/07/17 Python
浅析pandas随机排列与随机抽样
2021/01/22 Python
维珍澳洲航空官网:Virgin Australia
2017/09/08 全球购物
TripAdvisor斯洛伐克:阅读评论、比较价格和酒店预订
2018/04/25 全球购物
高校学生干部的自我评价分享
2013/11/04 职场文书
竞选班干部演讲稿
2014/04/24 职场文书
2014年工作总结及2015工作计划
2014/12/12 职场文书
银行大堂经理培训心得体会
2016/01/09 职场文书
会计做账心得体会
2016/01/22 职场文书