Python图像读写方法对比


Posted in Python onNovember 16, 2020

1  实验标准

因为训练使用的框架是Pytorch,因此读取的实验标准如下:

1、读取分辨率都为1920x1080的5张图片(png格式一张,jpg格式四张)并保存到数组。

2、将读取的数组转换为维度顺序为CxHxW的Pytorch张量,并保存到显存中(我使用GPU训练),其中三个通道的顺序为RGB。

3、记录各个方法在以上操作中所耗费的时间。因为png格式的图片大小差不多是质量有微小差异的jpg格式的10倍,所以数据集通常不会用png来保存,就不比较这两种格式的读取时间差异了。

写入的实验标准如下:

1、将5张1920x1080的5张图像对应的Pytorch张量转换为对应方法可使用的数据类型数组。

2、以jpg格式保存五张图片。

3、记录各个方法保存图片所耗费的时间。

2  实验情况

2.1  cv2

因为有GPU,所以cv2读取图片有两种方式:

1、先把图片都读取为一个numpy数组,再转换成保存在GPU中的pytorch张量。

2、初始化一个保存在GPU中的pytorch张量,然后将每张图直接复制进这个张量中。

第一种方式实验代码如下:

import os, torch
import cv2 as cv 
import numpy as np 
from time import time 
 
read_path = 'D:test'
write_path = 'D:test\\write\\'
 
# cv2读取 1
start_t = time()
imgs = np.zeros([5, 1080, 1920, 3])
for img, i in zip(os.listdir(read_path), range(5)): 
 img = cv.imread(filename=os.path.join(read_path, img))
 imgs[i] = img 
imgs = torch.tensor(imgs).to('cuda')[...,[2,1,0]].permute([0,3,1,2])/255 
print('cv2 读取时间1:', time() - start_t) 
# cv2保存
start_t = time()
imgs = (imgs.permute([0,2,3,1])[...,[2,1,0]]*255).cpu().numpy()
for i in range(imgs.shape[0]): 
 cv.imwrite(write_path + str(i) + '.jpg', imgs[i])
print('cv2 保存时间:', time() - start_t)

 实验结果:

cv2 读取时间1: 0.39693760871887207
cv2 保存时间: 0.3560612201690674

第二种方式实验代码如下:

import os, torch
import cv2 as cv 
import numpy as np 
from time import time 
 
read_path = 'D:test'
write_path = 'D:test\\write\\'
 
 
# cv2读取 2
start_t = time()
imgs = torch.zeros([5, 1080, 1920, 3], device='cuda')
for img, i in zip(os.listdir(read_path), range(5)): 
 img = torch.tensor(cv.imread(filename=os.path.join(read_path, img)), device='cuda')
 imgs[i] = img  
imgs = imgs[...,[2,1,0]].permute([0,3,1,2])/255 
print('cv2 读取时间2:', time() - start_t) 
# cv2保存
start_t = time()
imgs = (imgs.permute([0,2,3,1])[...,[2,1,0]]*255).cpu().numpy()
for i in range(imgs.shape[0]): 
 cv.imwrite(write_path + str(i) + '.jpg', imgs[i])
print('cv2 保存时间:', time() - start_t)

实验结果:

cv2 读取时间2: 0.23636841773986816
cv2 保存时间: 0.3066873550415039

2.2  matplotlib

同样两种读取方式,第一种代码如下:

import os, torch 
import numpy as np
import matplotlib.pyplot as plt 
from time import time 
 
read_path = 'D:test'
write_path = 'D:test\\write\\'
 
# matplotlib 读取 1
start_t = time()
imgs = np.zeros([5, 1080, 1920, 3])
for img, i in zip(os.listdir(read_path), range(5)): 
 img = plt.imread(os.path.join(read_path, img)) 
 imgs[i] = img  
imgs = torch.tensor(imgs).to('cuda').permute([0,3,1,2])/255 
print('matplotlib 读取时间1:', time() - start_t) 
# matplotlib 保存
start_t = time()
imgs = (imgs.permute([0,2,3,1])).cpu().numpy()
for i in range(imgs.shape[0]): 
 plt.imsave(write_path + str(i) + '.jpg', imgs[i])
print('matplotlib 保存时间:', time() - start_t)

实验结果:

matplotlib 读取时间1: 0.45380306243896484
matplotlib 保存时间: 0.768944263458252

第二种方式实验代码:

import os, torch 
import numpy as np
import matplotlib.pyplot as plt 
from time import time 
 
read_path = 'D:test'
write_path = 'D:test\\write\\'
 
# matplotlib 读取 2
start_t = time()
imgs = torch.zeros([5, 1080, 1920, 3], device='cuda')
for img, i in zip(os.listdir(read_path), range(5)): 
 img = torch.tensor(plt.imread(os.path.join(read_path, img)), device='cuda')
 imgs[i] = img  
imgs = imgs.permute([0,3,1,2])/255 
print('matplotlib 读取时间2:', time() - start_t) 
# matplotlib 保存
start_t = time()
imgs = (imgs.permute([0,2,3,1])).cpu().numpy()
for i in range(imgs.shape[0]): 
 plt.imsave(write_path + str(i) + '.jpg', imgs[i])
print('matplotlib 保存时间:', time() - start_t)

实验结果:

matplotlib 读取时间2: 0.2044532299041748
matplotlib 保存时间: 0.4737534523010254

需要注意的是,matplotlib读取png格式图片获取的数组的数值是在[0,1][0,1]范围内的浮点数,而jpg格式图片却是在[0,255][0,255]范围内的整数。所以如果数据集内图片格式不一致,要注意先转换为一致再读取,否则数据集的预处理就麻烦了。

2.3  PIL

PIL的读取与写入并不能直接使用pytorch张量或numpy数组,要先转换为Image类型,所以很麻烦,时间复杂度上肯定也是占下风的,就不实验了。

2.4  torchvision

torchvision提供了直接从pytorch张量保存图片的功能,和上面读取最快的matplotlib的方法结合,代码如下:

import os, torch 
import matplotlib.pyplot as plt 
from time import time 
from torchvision import utils 

read_path = 'D:test'
write_path = 'D:test\\write\\'
 
# matplotlib 读取 2
start_t = time()
imgs = torch.zeros([5, 1080, 1920, 3], device='cuda')
for img, i in zip(os.listdir(read_path), range(5)): 
 img = torch.tensor(plt.imread(os.path.join(read_path, img)), device='cuda')
 imgs[i] = img  
imgs = imgs.permute([0,3,1,2])/255 
print('matplotlib 读取时间2:', time() - start_t) 
# torchvision 保存
start_t = time() 
for i in range(imgs.shape[0]):  
 utils.save_image(imgs[i], write_path + str(i) + '.jpg')
print('torchvision 保存时间:', time() - start_t)

实验结果:

matplotlib 读取时间2: 0.15358829498291016
torchvision 保存时间: 0.14760661125183105

可以看出这两个是最快的读写方法。另外,要让图片的读写尽量不影响训练进程,我们还可以让这两个过程与训练并行。另外,utils.save_image可以将多张图片拼接成一张来保存,具体使用方法如下:

utils.save_image(tensor = imgs,   # 要保存的多张图片张量 shape = [n, C, H, W]
         fp = 'test.jpg',  # 保存路径
         nrow = 5,     # 多图拼接时,每行所占的图片数
         padding = 1,    # 多图拼接时,每张图之间的间距
         normalize = True, # 是否进行规范化,通常输出图像用tanh,所以要用规范化 
         range = (-1,1))  # 规范化的范围

以上就是Python图像读写方法对比的详细内容,更多关于python 图像读写的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python使用Scrapy爬取妹子图
May 28 Python
Python 带有参数的装饰器实例代码详解
Dec 06 Python
python实现转圈打印矩阵
Mar 02 Python
python处理大日志文件
Jul 23 Python
使用PYTHON解析Wireshark的PCAP文件方法
Jul 23 Python
Python的条件锁与事件共享详解
Sep 12 Python
python numpy之np.random的随机数函数使用介绍
Oct 06 Python
Python 取numpy数组的某几行某几列方法
Oct 24 Python
Python求正态分布曲线下面积实例
Nov 20 Python
PyCharm 2019.3发布增加了新功能一览
Dec 08 Python
jupyter notebook 实现matplotlib图动态刷新
Apr 22 Python
JupyterNotebook 输出窗口的显示效果调整实现
Sep 22 Python
python3中编码获取网页的实例方法
Nov 16 #Python
Python3中小括号()、中括号[]、花括号{}的区别详解
Nov 15 #Python
Python根据URL地址下载文件并保存至对应目录的实现
Nov 15 #Python
python re的findall和finditer的区别详解
Nov 15 #Python
Python获取android设备cpu和内存占用情况
Nov 15 #Python
Python __slots__的使用方法
Nov 15 #Python
Python descriptor(描述符)的实现
Nov 15 #Python
You might like
DISCUZ 分页代码
2007/01/02 PHP
php学习之function的用法
2012/07/14 PHP
jQuery+php实现ajax文件即时上传的详解
2013/06/17 PHP
php传值赋值和传地址赋值用法实例分析
2015/06/20 PHP
js小技巧--自动隐藏红叉叉
2007/08/13 Javascript
比较全面的event对像在IE与FF中的区别 推荐
2009/09/21 Javascript
js 阻止子元素响应父元素的onmouseout事件具体实现
2013/12/23 Javascript
jquery实现弹出层遮罩效果的简单实例
2014/03/03 Javascript
js实现发送验证码后的倒计时功能
2015/05/28 Javascript
jquery UI Datepicker时间控件的使用方法(基础版)
2015/11/07 Javascript
js获取所有checkbox的值的简单实例
2016/05/30 Javascript
Vue.js使用v-show和v-if的注意事项
2016/12/13 Javascript
js oncontextmenu事件使用详解
2017/03/25 Javascript
vue checkbox 全选 数据的绑定及获取和计算方法
2018/02/09 Javascript
小程序文字跑马灯效果
2018/12/28 Javascript
Angular7创建项目、组件、服务以及服务的使用
2019/02/19 Javascript
js中Generator函数的深入讲解
2019/04/07 Javascript
nodejs中实现用户注册路由功能
2019/05/20 NodeJs
微信小程序位置授权处理方法
2019/06/13 Javascript
微信小程序跳转到其他网页(外部链接)的实现方法
2019/09/20 Javascript
jstree中的checkbox默认选中和隐藏示例代码
2019/12/29 Javascript
python获取文件扩展名的方法
2015/07/06 Python
python开发之str.format()用法实例分析
2016/02/22 Python
Python字典简介以及用法详解
2016/11/15 Python
Python实现扣除个人税后的工资计算器示例
2018/03/26 Python
彻底弄明白CSS3的Media Queries(跨平台设计)
2010/07/27 HTML / CSS
html5中监听canvas内部元素点击事件的三种方法
2019/04/28 HTML / CSS
Regatta官网:英国最受欢迎的户外服装和鞋类品牌
2019/05/01 全球购物
网络工程专业毕业生推荐信
2013/10/28 职场文书
董事长秘书工作职责
2014/06/10 职场文书
四风对照检查材料范文
2014/09/27 职场文书
2014年校务公开工作总结
2014/12/18 职场文书
煤矿安全生产工作总结
2015/08/13 职场文书
珍爱生命主题班会
2015/08/13 职场文书
新兵入伍决心书
2015/09/22 职场文书
Nginx的rewrite模块详解
2021/03/31 Servers