详解Golang如何实现支持随机删除元素的堆


Posted in Python onSeptember 23, 2022

背景

堆是一种非常常用的数据结构,它能够支持在O(1)的时间复杂度获取到最大值(或最小值),因此我们经常在需要求最值的场景使用它。

然而普通堆它有一个缺点,它没办法快速的定位一个元素,因此它也没办法快速删除一个堆中元素,需要遍历整个堆去查询目标元素,时间复杂度是O(n),因为堆的结构在逻辑上是这样的:

详解Golang如何实现支持随机删除元素的堆

在实际实现中一般是使用一个数组来模拟:

详解Golang如何实现支持随机删除元素的堆

也就是除了最大值(大顶堆)或最小值(小顶堆),其他元素其实是没有排序的,因此没办法通过二分查找的方式快速定位。

但是我们经常有一种场景,需要堆的快速求最值的性质,又需要能够支持快速的随机访问元素,特别是删除元素。

比如延迟任务的场景,我们可以使用堆对任务的到期时间戳进行排序,从而实现到期任务自动执行,但是它没办法支持随机删除一个延迟任务的需求。

下面将介绍一种支持O(log(n))随机删除元素的堆。

原理

数据结构

一种能够快速随机访问元素的数据结构是map,map如果是哈希表实现则能够在O(1)的复杂度下随机访问任何元素,而heap在知道要删除的元素的下标的情况下,也可以在O(log(n))的复杂度删除一个元素。因此我们可以结合这两个数据结构,使用map来记录heap中每个元素的下标,使用heap来获取最值。

比如对于上面的堆,我们首先给每个元素添加一个Key,这样我们才能够使用map:

详解Golang如何实现支持随机删除元素的堆

然后我们使用map记录每个key对应的下标:

详解Golang如何实现支持随机删除元素的堆

随机访问

这时候比如我们最简单的随机访问一个元素C,那么就是从map[C]得到元素在heap里面的index=2,因此可以拿到元素的值。

index = m[C] // 获取元素C在heap的下标
return h[index] // 获取index在heap的值

删除

而如果我们要删除元素C,我们也是从map[C]得到元素在heap里面的index=2,然后把index为2的元素和堆最后一个元素交换,然后从index=2向上和向下调整堆,也就是:

index = m[C] // 获取元素C在heap的下标
swap(index, n - 1) // 和最后一个元素交换
pop() // 移除最后一个元素,也就是元素C
down(index) // 从index向下调整堆
up(index) // 从index向上调整堆

map里面的元素index维护

上面使用的swap(i, j)和pop()操作都会影响到map里面元素的index,其实还有push(k, v)操作也会影响元素的index。

对于swap(i, j)来说需要交换两个元素的index:

h[i], h[j] = h[j], h[i] // 交换堆中两个元素
m[h[i].Key] = i // 交换map元素索引
m[h[j].Key] = j // 交换map元素索引

pop()需要删除元素的索引:

elem = h.removeLast() // 移除最后一个元素
m.remove(elem.Key) // 移除元素索引

push(k, v)需要添加元素索引:

m[key] = n // 添加元素索引
h.addLast(Entry(K, V)) // 添加元素到堆

这样其他操作就不需要维护map里面的索引问题了,保持和正常的堆的实现逻辑基本一致。

Golang实现

由于这个数据结构使用到了map和heap,因此起了一个比较短的名字叫meap,也就是m[ap]+[h]eap

数据结构

其中主要就是一个heap和一个map,由于我们也需要从heap到map的操作,因此heap里面每个元素Entry都记录了Key,这样就可以从heap快速访问到map里面的元素,实现map里面index的修改。

LessFunc主要用于比较两个元素大小。

type Meap[K comparable, V any] struct {
	h        []Entry[K, V]
	m        map[K]int
	lessFunc LessFunc[K, V]
}

type Entry[K comparable, V any] struct {
	Key   K
	Value V
}

type LessFunc[K comparable, V any] func(e1 Entry[K, V], e2 Entry[K, V]) bool

移除堆顶元素

这里和正常的堆的逻辑是一样的,也就是把堆顶元素和最后一个元素交换,然后调整堆,移除堆中最后一个元素。

func (h *Meap[K, V]) Pop() Entry[K, V] {
	n := h.Len() - 1
	h.swap(0, n) // 堆顶和最后一个元素交换
	h.down(0, n) // 调整堆
	return h.pop() // 移除堆中最后一个元素
}

添加元素

这里的参数和普通的堆有一点区别,也就是我们有Key和Value,因为map必须使用一个Key,因此多了一个Key参数。

由于有map的存在,我们可以先判断元素是否已经存在,如果存在则设置Value然后调整堆即可。

如果不存在则添加元素到堆的最后,然后调整堆。

func (h *Meap[K, V]) Push(key K, value V) {
	// 如果堆中已经包含这个元素
	// 更新值并调整堆
	if h.Contains(key) {
		index := h.m[key] // 元素在堆中下标
		h.h[index].Value = value // 更新堆中元素值
		h.fix(index) // 向上向下调整堆
		return
	}

	// 否则添加元素
	h.push(key, value) // 添加元素到堆的最后面
	h.up(h.Len() - 1) // 向上调整堆
}

移除元素

我们首先通过key定位元素在堆中下标,然后把这个下标和堆最后一个元素交换,调整堆,最后把堆最后一个元素移除。

func (h *Meap[K, V]) Remove(key K) {
	i, ok := h.m[key] // 获取元素在堆中下标
	if !ok { // 如果元素不存在则直接返回
		return
	}

	n := h.Len() - 1 // 最后一个元素索引
	if n != i { // 如果被移除的元素就是堆中最后一个元素,则没必要调整了,直接移除即可
		h.swap(i, n) // 和最后一个元素交换
		if !h.down(i, n) { // 向下调整
			h.up(i) // 向上调整
		}
	}
	h.pop() // 移除堆中最后一个元素
}

push()、pop()和swap()

涉及到调整map中index的操作都集中到这三个操作之中:

// swap两个元素的时候
// 两个元素在map里的下标也要交换
func (h *Meap[K, V]) swap(i, j int) {
	h.h[i], h.h[j] = h.h[j], h.h[i] // 交换两个元素
	h.m[h.h[i].Key] = i // 更新索引
	h.m[h.h[j].Key] = j // 更新索引
}

// 添加一个元素到堆的末尾
func (h *Meap[K, V]) push(key K, value V) {
	h.m[key] = h.Len() // 添加索引
	h.h = append(h.h, Entry[K, V]{ // 添加元素到堆尾
		Key:   key,
		Value: value,
	})
}

// 从堆的末尾移除元素
func (h *Meap[K, V]) pop() Entry[K, V] {
	elem := h.h[h.Len()-1] // 堆尾元素
	h.h = h.h[:h.Len()-1] // 移除堆尾元素
	delete(h.m, elem.Key) // 删除堆尾元素索引
	return elem
}

时间复杂度

上面Golang实现中关键操作的时间复杂度:

操作 时间复杂度 描述
Push() O(log(n)) 添加元素
Pop() O(log(n)) 移除堆顶元素
Peek() O(1) 获取堆顶元素
Get() O(1) 获取元素
Remove() O(log(n)) 删除元素

总结

map的引入解决了heap无法随机删除的问题,从而能够解决更多的最值问题。其实还有其他的数据结构也能够高效的解决最值问题,比如红黑树能够在O(log(n))获取最大最小值,zset也可以在O(log(n))的复杂度下获取最值,而且它们也是能够支持随机删除。当然如果你所使用的语言不支持红黑树或者zset,那么使用map+heap实现也是可以的,毕竟实现一个可删除的堆比实现一个红黑树或者zset容易很多,而且meap获取最值的Peek()操作的时间复杂度是O(1)。

到此这篇关于详解Golang如何实现支持随机删除元素的堆的文章就介绍到这了,更多相关Golang随机删除元素内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
部署Python的框架下的web app的详细教程
Apr 30 Python
Python 模拟购物车的实例讲解
Sep 11 Python
Python及Django框架生成二维码的方法分析
Jan 31 Python
使用Anaconda3建立虚拟独立的python2.7环境方法
Jun 11 Python
解决tensorflow测试模型时NotFoundError错误的问题
Jul 26 Python
Python matplotlib绘制饼状图功能示例
Sep 10 Python
tensorflow:指定gpu 限制使用量百分比,设置最小使用量的实现
Feb 06 Python
使用python创建生成动态链接库dll的方法
May 09 Python
Tensorflow加载Vgg预训练模型操作
May 26 Python
django rest framework 自定义返回方式
Jul 12 Python
python七种方法判断字符串是否包含子串
Aug 18 Python
python音频处理的示例详解
Dec 23 Python
python中validators库的使用方法详解
Sep 23 #Python
Python pyecharts案例超市4年数据可视化分析
Aug 14 #Python
Python编写车票订购系统 Python实现快递收费系统
Aug 14 #Python
Golang Web 框架Iris安装部署
Aug 14 #Python
python manim实现排序算法动画示例
Python 操作pdf pdfplumber读取PDF写入Exce
Aug 14 #Python
Python使用plt.boxplot()函数绘制箱图、常用方法以及含义详解
Aug 14 #Python
You might like
十天学会php(3)
2006/10/09 PHP
PHP如何编写易读的代码
2007/07/10 PHP
php中将汉字转换成拼音的函数代码
2012/09/08 PHP
浅谈php中fopen不能创建中文文件名文件的问题
2017/02/06 PHP
深入解析PHP中SESSION反序列化机制
2017/03/01 PHP
PHP lcfirst()函数定义与用法
2019/03/08 PHP
基于laravel缓冲cache的用法详解
2019/10/23 PHP
[原创]js与自动伸缩图片 自动缩小图片的多浏览器兼容的方法总结
2007/03/12 Javascript
基于Jquery的标签智能验证实现代码
2010/12/27 Javascript
js控制分页打印、打印分页示例
2014/02/08 Javascript
jquery日历控件实现方法分享
2014/03/07 Javascript
JavaScript中对象的不同创建方法
2016/08/12 Javascript
js HTML5手机刮刮乐代码
2020/09/29 Javascript
详解Vue.js分发之作用域槽
2017/06/13 Javascript
jQuery实现的粘性滚动导航栏效果实例【附源码下载】
2017/10/19 jQuery
基于node下的http小爬虫的示例代码
2018/01/11 Javascript
jQuery动态添加li标签并添加属性和绑定事件方法
2018/02/24 jQuery
基于vue实现可搜索下拉框定制组件
2020/03/26 Javascript
在vue中v-bind使用三目运算符绑定class的实例
2018/09/29 Javascript
在JavaScript中如何访问暂未存在的嵌套对象
2019/06/18 Javascript
Python import与from import使用及区别介绍
2018/09/06 Python
详解python实现可视化的MD5、sha256哈希加密小工具
2020/09/14 Python
巴黎一票通:The Paris Pass
2018/02/10 全球购物
Happy Socks英国官网:购买五颜六色的袜子
2020/11/03 全球购物
外国语学院毕业生自荐信
2013/10/28 职场文书
产品销售员岗位职责
2013/12/18 职场文书
简单英文演讲稿
2014/01/01 职场文书
2014年国培研修感言
2014/03/09 职场文书
安全生产管理合理化建议书
2014/03/12 职场文书
检察机关个人对照检查材料
2014/09/15 职场文书
医院见习报告范文
2014/11/03 职场文书
新学期家长寄语2016
2015/12/03 职场文书
毕业生自荐求职信书写的技巧
2019/08/26 职场文书
Android自定义ScrollView实现阻尼回弹
2022/04/01 Java/Android
html网页引入svg图片的4种方式
2022/08/05 HTML / CSS
MySQL中LAG()函数和LEAD()函数的使用
2022/08/14 MySQL