matplotlib基础绘图命令之errorbar的使用


Posted in Python onAugust 13, 2020

在matplotlib中,errorbar方法用于绘制带误差线的折线图,基本用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1)

输出结果如下

matplotlib基础绘图命令之errorbar的使用

yerr参数用于指定y轴水平的误差,同时该方法也支持x轴水平的误差,对应参数xerr。指定误差值有多种方式,上述代码展示的是指定一个统一标量的用法,此时,所以的点误差值都一样。

除此之外,还可以指定为一个和点的个数相同的数组,为每个点单独设置误差值,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=[1, 2, 3, 4])

输出结果如下

matplotlib基础绘图命令之errorbar的使用

另外,考虑到每个点的上下误差会不同,也支持用行数为2的多维数组来单独指定每个点上下的误差值,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=[[1,2,3,4],[1, 2, 3, 4]])

输出结果如下

matplotlib基础绘图命令之errorbar的使用

xerr参数的用法和yerr相同,这里不再赘述,示例如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], xerr=1)

输出结果如下

matplotlib基础绘图命令之errorbar的使用

errorbar方法支持同时指定xerr和yerr参数,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], xerr=0.5, yerr=0.5)

输出结果如下

matplotlib基础绘图命令之errorbar的使用

对于误差图的样式,可以通过以下几个参数来个性化指定

1. fmt

fmt参数的值和plot方法中指定点的颜色,形状,线条风格的缩写方式相同,示例如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, fmt='co--')

上述代码同时指定了3个属性,输出结果如下

matplotlib基础绘图命令之errorbar的使用

默认的图中只有线条这一元素,所以当我们指定了点的属性时,如果不指定线条的风格等属性,则对应的属性为空,线条元素不会显示,示例如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, fmt='co')

上述代码没有指定线条的风格,输出结果如下

matplotlib基础绘图命令之errorbar的使用

再来看一个例子,示例如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, fmt='c')

上述代码只指定了颜色属性,输出结果如下

matplotlib基础绘图命令之errorbar的使用

2. ecolor

ecolor参数指定error bar的颜色,可以和折线的颜色加以区分,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, fmt='co--', ecolor='g')

输出结果如下

matplotlib基础绘图命令之errorbar的使用

3. elinewidth

elinewidth参数指定error bar的线条宽度,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, fmt='ro-',ecolor='k',elinewidth=10)

输出结果如下

matplotlib基础绘图命令之errorbar的使用

4. lims系列参数

lims系列参数用于控制误差线的显示,对于x轴水平的误差线而言,有以下两个参数

1. xuplims

2. xlolims

对于y轴水平的误差线而言,有以下两个参数

1. uplims

2. lolims

这四个参数默认的取值为False, 当取值为True时,对应方向的误差线不显示,同时在另外一个方向上的误差线上,会用箭头加以标识。

当uplims参数的值为True时,向上的误差线不显示,向下的误差线加箭头,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, uplims=True)

输出结果如下

matplotlib基础绘图命令之errorbar的使用

当lolims参数的值为True时,向下的误差线不显示,向上的误差线加箭头,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, lolims=True)

输出结果如下

matplotlib基础绘图命令之errorbar的使用

当uplims和lolims参数的值都为True时,双向的误差线都加箭头,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, uplims=True, lolims=True)

输出结果如下

matplotlib基础绘图命令之errorbar的使用

除了指定为标量外,lims系列参数的值也可以是一个列表,为每个点单独设值,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, uplims=[False, True, False, True], lolims=[True, False, True, False])

输出结果如下

matplotlib基础绘图命令之errorbar的使用

不同的True和False的组合可以实现不同的效果,示例如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=0.5, uplims=[True,True,False,False],lolims=[True,False,True,False])

输出结果如下

matplotlib基础绘图命令之errorbar的使用

和xerr,yerr类似,我们也可以同时指定4个lims参数,示例如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=0.5, uplims=[True,True,False,False],lolims=[True,False,True,False],xerr=0.5, xuplims=[True,False,True,False],xlolims=[True,True,False,False])

输出结果如下

matplotlib基础绘图命令之errorbar的使用

5. errorevery

errorevery参数用于指定误差线的抽样频率,默认情况下,每个点的误差线都会显示,当点很多且密集分布时, 每个点都显示误差线的话,就很难看出有效的信息,比如下图

plt.errorbar(x=range(100), y=range(100),yerr=50)

matplotlib基础绘图命令之errorbar的使用

过于密集的情况下,可以使用errorevery参数进行抽样,基本用法如下

plt.errorbar(x=range(100), y=range(100),yerr=50,errorevery=6)

上述代码表示从第一个点开始,每6个点画一个误差线,这样抽样之后,误差线就不那么密集了,输出结果如下

matplotlib基础绘图命令之errorbar的使用

除了以上几个专属的基本参数外,还有很多的通用参数,可以对errorbar的样式进行精细调整,示例如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, marker='s', mfc='red', mec='green', ms=20, mew=4)

输出结果如下

matplotlib基础绘图命令之errorbar的使用

errorbar的参数较多,熟练掌握常用的几个即可。

到此这篇关于matplotlib基础绘图命令之errorbar的使用的文章就介绍到这了,更多相关matplotlib errorbar内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python 图片验证码代码
Dec 07 Python
用Python进行一些简单的自然语言处理的教程
Mar 31 Python
使用Python编写基于DHT协议的BT资源爬虫
Mar 19 Python
Linux下为不同版本python安装第三方库
Aug 31 Python
python Crypto模块的安装与使用方法
Dec 21 Python
Python 12306抢火车票脚本
Feb 07 Python
python如何读写json数据
Mar 21 Python
利用Python如何批量修改数据库执行Sql文件
Jul 29 Python
Python程序包的构建和发布过程示例详解
Jun 09 Python
django中使用Celery 布式任务队列过程详解
Jul 29 Python
python操作docx写入内容,并控制文本的字体颜色
Feb 13 Python
在 Windows 下搭建高效的 django 开发环境的详细教程
Jul 27 Python
Python如何读写CSV文件
Aug 13 #Python
区分python中的进程与线程
Aug 13 #Python
python判断一个变量是否已经设置的方法
Aug 13 #Python
vscode+PyQt5安装详解步骤
Aug 12 #Python
python使用列表的最佳方案
Aug 12 #Python
Python实现播放和录制声音的功能
Aug 12 #Python
Python实现文件压缩和解压的示例代码
Aug 12 #Python
You might like
生成卡号php代码
2008/04/09 PHP
分享PHP-pcntl 实现多进程代码
2016/09/30 PHP
javascript 伪数组实现方法
2010/10/11 Javascript
window.parent与window.openner区别介绍
2012/04/12 Javascript
纯js简单日历实现代码
2013/10/05 Javascript
使用JavaScript实现连续滚动字幕效果的方法
2015/07/07 Javascript
jQuery ajax MD5实现用户注册即时验证功能
2016/10/11 Javascript
JS实现Ajax的方法分析
2016/12/20 Javascript
NodeJS收发GET和POST请求的示例代码
2017/08/25 NodeJs
详述 Sublime Text 打开 GBK 格式中文乱码的解决方法
2017/10/26 Javascript
利用vue开发一个所谓的数独方法实例
2017/12/21 Javascript
node结合swig渲染摸板的方法
2018/04/11 Javascript
vue中typescript装饰器的使用方法超实用教程
2019/06/17 Javascript
JavaScript this指向相关原理及实例解析
2020/07/10 Javascript
在Python中处理日期和时间的基本知识点整理汇总
2015/05/22 Python
PyQt5打开文件对话框QFileDialog实例代码
2018/02/07 Python
Python 按字典dict的键排序,并取出相应的键值放于list中的实例
2019/02/12 Python
Django模型中字段属性choice使用说明
2020/03/30 Python
详解Selenium-webdriver绕开反爬虫机制的4种方法
2020/10/28 Python
Pandas DataFrame求差集的示例代码
2020/12/13 Python
Numpy ndarray 多维数组对象的使用
2021/02/10 Python
Python如何telnet到网络设备
2021/02/18 Python
python 制作网站小说下载器
2021/02/20 Python
explicit和implicit的含义
2012/11/15 面试题
研究生自荐信
2013/10/09 职场文书
新闻学毕业生自荐信
2013/11/15 职场文书
体育教育专业自荐信范文
2013/12/20 职场文书
建筑总经理岗位职责
2014/02/02 职场文书
研发工程师岗位职责
2014/04/28 职场文书
产品质量保证书
2014/04/29 职场文书
法院信息化建设方案
2014/05/21 职场文书
征兵宣传标语
2014/06/20 职场文书
领导班子个人查摆问题对照检查材料
2014/10/02 职场文书
2014年工人工作总结
2014/11/25 职场文书
2014年仓库保管员工作总结
2014/12/03 职场文书
2016五四青年节活动总结范文
2016/04/06 职场文书