探秘TensorFlow 和 NumPy 的 Broadcasting 机制


Posted in Python onMarch 13, 2020

在使用Tensorflow的过程中,我们经常遇到数组形状不同的情况,但有时候发现二者还能进行加减乘除的运算,在这背后,其实是Tensorflow的broadcast即广播机制帮了大忙。而Tensorflow中的广播机制其实是效仿的numpy中的广播机制。本篇,我们就来一同研究下numpy和Tensorflow中的广播机制。

1、numpy广播原理

1.1 数组和标量计算时的广播

标量和数组合并时就会发生简单的广播,标量会和数组中的每一个元素进行计算。

举个例子:

arr = np.arange(5)
arr * 4

得到的输出为:

array([ 0,  4,  8, 12, 16])

这个是很好理解的,我们重点来研究数组之间的广播

1.2 数组之间计算时的广播

用书中的话来介绍广播的规则:两个数组之间广播的规则:如果两个数组的后缘维度(即从末尾开始算起的维度)的轴长度相等或其中一方的长度为1,则认为他们是广播兼容的,广播会在缺失和(或)长度为1的维度上进行。

上面的规则挺拗口的,我们举几个例子吧:

二维的情况

假设有一个二维数组,我们想要减去它在0轴和1轴的均值,这时的广播是什么样的呢。

我们先来看减去0轴均值的情况:

arr = np.arange(12).reshape(4,3)
arr-arr.mean(0)

输出的结果为:

array([[-4.5, -4.5, -4.5],
       [-1.5, -1.5, -1.5],
       [ 1.5,  1.5,  1.5],
       [ 4.5,  4.5,  4.5]])

0轴的平均值为[4.5,5.5,6.5],形状为(3,),而原数组形状为(4,3),在进行广播时,从后往前比较两个数组的形状,首先是3=3,满足条件而继续比较,这时候发现其中一个数组的形状数组遍历完成,因此会在缺失轴即0轴上进行广播。

可以理解成将均值数组在0轴上复制4份,变成形状(4,3)的数组,再与原数组进行计算。

书中的图形象的表示了这个过程(数据不一样请忽略):

探秘TensorFlow 和 NumPy 的 Broadcasting 机制

我们再来看一下减去1轴平均值的情况,即每行都减去该行的平均值:

arr - arr.mean(1)

此时报错了:

探秘TensorFlow 和 NumPy 的 Broadcasting 机制

我们再来念叨一遍我们的广播规则,均值数组的形状为(4,),而原数组形状为(4,3),按照比较规则,4 != 3,因此不符合广播的条件,因此报错。

正确的做法是什么呢,因为原数组在0轴上的形状为4,我们的均值数组必须要先有一个值能够跟3比较同时满足我们的广播规则,这个值不用多想,就是1。因此我们需要先将均值数组变成(4,1)的形状,再去进行运算:

arr-arr.mean(1).reshape((4,1))

得到正确的结果:

array([[-1., 0., 1.],
    [-1., 0., 1.],
    [-1., 0., 1.],
    [-1., 0., 1.]])

三维的情况

理解了二维的情况,我们也就能很快的理解三维数组的情况。

首先看下图:

探秘TensorFlow 和 NumPy 的 Broadcasting 机制

根据广播原则分析:arr1的shape为(3,4,2),arr2的shape为(4,2),它们的后缘轴长度都为(4,2),所以可以在0轴进行广播。因此,arr2在0轴上复制三份,shape变为(3,4,2),再进行计算。

不只是0轴,1轴和2轴也都可以进行广播。但形状必须满足一定的条件。举个例子来说,我们arr1的shape为(8,5,3),想要在0轴上广播的话,arr2的shape是(1,5,3)或者(5,3),想要在1轴上进行广播的话,arr2的shape是(8,1,3),想要在2轴上广播的话,arr2的shape必须是(8,5,1)。

探秘TensorFlow 和 NumPy 的 Broadcasting 机制

我们来写几个例子吧:

arr2 = np.arange(24).reshape((2,3,4))
arr3_0 = np.arange(12).reshape((3,4))
print("0轴广播")
print(arr2 - arr3_0)

arr3_1 = np.arange(8).reshape((2,1,4))
print("1轴广播")
print(arr2 - arr3_1)

arr3_2 = np.arange(6).reshape((2,3,1))
print("2轴广播")
print(arr2 - arr3_2)

输出为:

0轴广播
[[[ 0  0  0  0]
  [ 0  0  0  0]
  [ 0  0  0  0]]

 [[12 12 12 12]
  [12 12 12 12]
  [12 12 12 12]]]
1轴广播
[[[ 0  0  0  0]
  [ 4  4  4  4]
  [ 8  8  8  8]]

 [[ 8  8  8  8]
  [12 12 12 12]
  [16 16 16 16]]]
2轴广播
[[[ 0  1  2  3]
  [ 3  4  5  6]
  [ 6  7  8  9]]

 [[ 9 10 11 12]
  [12 13 14 15]
  [15 16
 17 18]]]

如果我们想在两个轴上进行广播,那arr2的shape要满足什么条件呢?

arr1.shape 广播轴 arr2.shape
(8,5,3) 0,1 (3,),(1,3),(1,1,3)
(8,5,3) 0,2 (5,1),(1,5,1)
(8,5,3) 1,2 (8,1,1)

具体的例子就不给出啦,嘻嘻。

2、Tensorflow 广播举例

Tensorflow中的广播机制和numpy是一样的,因此我们给出一些简单的举例:

二维的情况

sess = tf.Session()
a = tf.Variable(tf.random_normal((2,3),0,0.1))
b = tf.Variable(tf.random_normal((2,1),0,0.1))
c = a - b
sess.run(tf.global_variables_initializer())
sess.run(c)

输出为:

array([[-0.1419442 ,  0.14135399,  0.22752595],
       [ 0.1382471 ,  0.28228047,  0.13102233]], dtype=float32)

三维的情况

sess = tf.Session()
a = tf.Variable(tf.random_normal((2,3,4),0,0.1))
b = tf.Variable(tf.random_normal((2,1,4),0,0.1))
c = a - b
sess.run(tf.global_variables_initializer())
sess.run(c)

输出为:

array([[[-0.0154749 , -0.02047186, -0.01022427, -0.08932371],
        [-0.12693939, -0.08069084, -0.15459496,  0.09405404],
        [ 0.09730847,  0.06936138,  0.04050628,  0.15374713]],

       [[-0.02691782, -0.26384184,  0.05825682, -0.07617196],
        [-0.02653179, -0.01997554, -0.06522765,  0.03028341],
        [-0.07577246,  0.03199019,  0.0321    , -0.12571403]]], dtype=float32)

错误示例

sess = tf.Session()
a = tf.Variable(tf.random_normal((2,3,4),0,0.1))
b = tf.Variable(tf.random_normal((2,4),0,0.1))
c = a - b
sess.run(tf.global_variables_initializer())
sess.run(c)

输出为:

ValueError: Dimensions must be equal, but are 3 and 2 for 'sub_2' (op: 'Sub') with input shapes: [2,3,4], [2,4].

到此这篇关于探秘TensorFlow 和 NumPy 的 Broadcasting 机制的文章就介绍到这了,更多相关TensorFlow 和NumPy 的Broadcasting 内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python中List.count()方法的使用教程
May 20 Python
自己使用总结Python程序代码片段
Jun 02 Python
Python读写文件方法总结
Jun 09 Python
Python标准库之collections包的使用教程
Apr 27 Python
python代码过长的换行方法
Jul 19 Python
python requests post多层字典的方法
Dec 27 Python
python版百度语音识别功能
Jul 09 Python
Django获取应用下的所有models的例子
Aug 30 Python
Python实现元素等待代码实例
Nov 11 Python
python下载的库包存放路径
Jul 27 Python
python异常中else的实例用法
Jun 15 Python
Django对接elasticsearch实现全文检索的示例代码
Aug 02 Python
自定义Django Form中choicefield下拉菜单选取数据库内容实例
Mar 13 #Python
django处理select下拉表单实例(从model到前端到post到form)
Mar 13 #Python
python实现俄罗斯方块游戏(改进版)
Mar 13 #Python
Python之Django自动实现html代码(下拉框,数据选择)
Mar 13 #Python
Tensorflow中的dropout的使用方法
Mar 13 #Python
python实现简单俄罗斯方块
Mar 13 #Python
Python实现检测文件的MD5值来查找重复文件案例
Mar 12 #Python
You might like
php导入大量数据到mysql性能优化技巧
2014/12/29 PHP
PHP中浮点数计算比较及取整不准确的解决方法
2015/01/09 PHP
php实现随机显示图片方法汇总
2015/05/21 PHP
php自定义函数br2nl实现将html中br换行符转换为文本输入中换行符的方法【与函数nl2br功能相反】
2017/02/17 PHP
Laravel 实现Eloquent模型分组查询并返回每个分组的数量 groupBy()
2019/10/23 PHP
PHP程序员必须知道的两种日志实例分析
2020/05/14 PHP
jQuery '行 4954 错误: 不支持该属性或方法' 的问题解决方法
2011/01/19 Javascript
js怎么覆盖原有方法实现重写
2014/09/04 Javascript
js实现不重复导入的方法
2016/03/02 Javascript
jQuery对checkbox 复选框的全选全不选反选的操作
2016/08/09 Javascript
使用bootstrap实现多窗口和拖动效果
2016/09/22 Javascript
浅谈Node.js:理解stream
2016/12/08 Javascript
Bootstrap CSS组件之按钮组(btn-group)
2016/12/17 Javascript
jQuery图片加载失败替换默认图片方法汇总
2017/11/29 jQuery
vue 刷新之后 嵌套路由不变 重新渲染页面的方法
2018/09/13 Javascript
详解几十行代码实现一个vue的状态管理
2019/01/28 Javascript
浅析vue插槽和作用域插槽的理解
2019/04/22 Javascript
vscode调试node.js的实现方法
2020/03/22 Javascript
在vant 中使用cell组件 定义图标该图片和位置操作
2020/11/02 Javascript
详解Python中的Numpy、SciPy、MatPlotLib安装与配置
2017/11/17 Python
解决安装tensorflow遇到无法卸载numpy 1.8.0rc1的问题
2018/06/13 Python
python实现动态数组的示例代码
2019/07/15 Python
Bogner美国官网:滑雪服中的”Dior”
2018/01/30 全球购物
定制别致的瑜伽垫:Sugarmat
2019/06/21 全球购物
采用怎样的方法保证数据的完整性
2013/12/02 面试题
优秀部门获奖感言
2014/02/14 职场文书
文明社区申报材料
2014/08/21 职场文书
《我爱祖国》演讲稿1000字
2014/09/26 职场文书
助学金感谢信
2015/01/20 职场文书
幼儿园欢迎词范文
2015/01/26 职场文书
2015建军节87周年演讲稿
2015/03/19 职场文书
学雷锋主题班会教案
2015/08/13 职场文书
高中政治教学反思
2016/02/23 职场文书
一篇文章弄懂MySQL查询语句的执行过程
2021/05/07 MySQL
教你使用Python pypinyin库实现汉字转拼音
2021/05/27 Python
MongoDB 常用的crud操作语句
2021/06/20 MongoDB