基于Python实现nc批量转tif格式


Posted in Python onAugust 14, 2022

由于做项目需要运用到netCDF格式的气象数据,而ArcGIS中需要用栅格影像进行处理,对于较多的文件,ArcGIS一个个手动转换过于繁琐,因此我们采用Python进行转换,当然也可以采用matlab进行转换。

首先需要安装下面几个库:

import os
import netCDF4 as nc
import numpy as np
from osgeo import gdal, osr, ogr
import glob

我们可以在下面网址中寻找对应python安装版本的安装包,下载后,在pycharm控制台中直接安装即可。例如pip install netCDF4-1.5.8-cp39-cp39-

win_amd64.whl

https://www.lfd.uci.edu/~gohlke/pythonlibs/

安装之后即可进行转换:

def nc2tif(data, Output_folder):
    tmp_data = nc.Dataset(data)  # 利用.Dataset()方法读取nc数据
    print('tmp_data', tmp_data)
 
    Lat_data = tmp_data.variables['lat'][:]
    Lon_data = tmp_data.variables['lon'][:]
    # print(Lat_data)
    # print(Lon_data)
 
    tmp_arr = np.asarray(tmp_data.variables['temp'])
 
    # 影像的左上角&右下角坐标
    Lonmin, Latmax, Lonmax, Latmin = [Lon_data.min(), Lat_data.max(), Lon_data.max(), Lat_data.min()]
    # print(Lonmin, Latmax, Lonmax, Latmin)
 
    # 分辨率计算
    Num_lat = len(Lat_data)  # 5146
    Num_lon = len(Lon_data)  # 7849
    Lat_res = (Latmax - Latmin) / (float(Num_lat) - 1)
    Lon_res = (Lonmax - Lonmin) / (float(Num_lon) - 1)
    # print(Num_lat, Num_lon)
    # print(Lat_res, Lon_res)
 
    for i in range(len(tmp_arr[:])):
        # i=0,1,2,3,4,5,6,7,8,9,...
        # 创建tif文件
        driver = gdal.GetDriverByName('GTiff')
        out_tif_name = Output_folder + '\\' + data.split('\\')[-1].split('.')[0] + '_' + str(i + 1) + '.tif'
        out_tif = driver.Create(out_tif_name, Num_lon, Num_lat, 1, gdal.GDT_Int16)
 
        # 设置影像的显示范围
        # Lat_re前需要添加负号
        geotransform = (Lonmin, Lon_res, 0.0, Latmax, 0.0, -Lat_res)
        out_tif.SetGeoTransform(geotransform)
 
        # 定义投影
        prj = osr.SpatialReference()
        prj.ImportFromEPSG(4326)  # WGS84
        out_tif.SetProjection(prj.ExportToWkt())
 
        # 数据导出
        out_tif.GetRasterBand(1).WriteArray(tmp_arr[i])  # 将数据写入内存,此时没有写入到硬盘
        out_tif.FlushCache()  # 将数据写入到硬盘
        out_tif = None  # 关闭tif文件
 
def main():
    Input_folder = r"E:\competition\航天宏图\2-meter air temperature_CMFD\Data_forcing_01yr_010deg\\"
    # Input_folder = r"E:\competition\航天宏图\2-meter air temperature_CMFD\Data_forcing_01mo_010deg\\"
    Output_folder = r"E:\competition\航天宏图\2-meter air temperature_CMFD\tif\\"
 
    # 读取所有数据
    data_list = glob.glob(os.path.join(Input_folder + '*.nc'))
    print(data_list)
 
    for i in range(len(data_list)):
        data = data_list[i]
        nc2tif(data, Output_folder)
        print(data + '转tif成功')

值得注意的是,tmp_arr = np.asarray(tmp_data.variables['temp'])中的temp可以根据需要转换的波段进行选择,我们可以在读取数据之后print一下,找到对应的波段进行替换即可。如下图中我们应该选择的就是temp。

基于Python实现nc批量转tif格式

完成上述步骤即可得到所需的tif图像:

基于Python实现nc批量转tif格式

基于Python实现nc批量转tif格式

在上述代码中,经过处理的影像是倒置的,可能是处理过程中仿射矩阵读写错误导致的。因此我们可以在写入影像的时候,进行影像的垂直镜像操作即可:WriteArray(ndvi_arr_float[i][::-1]) 

def NC_to_tiffs(data, Output_folder):
    nc_data_obj = nc.Dataset(data)
    Lon = nc_data_obj.variables['lon'][:]
    Lat = nc_data_obj.variables['lat'][:]
    ndvi_arr = np.asarray(nc_data_obj.variables['temp'])  
    ndvi_arr_float = ndvi_arr.astype(float) / 10000  之间
    # 影像的左上角和右下角坐标
    LonMin, LatMax, LonMax, LatMin = [Lon.min(), Lat.max(), Lon.max(), Lat.min()]
    # 分辨率计算
    N_Lat = len(Lat)
    N_Lon = len(Lon)
    Lon_Res = (LonMax - LonMin) / (float(N_Lon) - 1)
    Lat_Res = (LatMax - LatMin) / (float(N_Lat) - 1)
    for i in range(len(ndvi_arr[:])):
        driver = gdal.GetDriverByName('GTiff')
        out_tif_name = Output_folder + '\\' + data.split('\\')[-1].split('.')[0] + '_' + str(i + 1) + '.tif'
        out_tif = driver.Create(out_tif_name, N_Lon, N_Lat, 1, gdal.GDT_Float32)
       
        geotransform = (LonMin, Lon_Res, 0, LatMax, 0, -Lat_Res)
        out_tif.SetGeoTransform(geotransform)
      
        srs = osr.SpatialReference()
        srs.ImportFromEPSG(4326) 
        out_tif.SetProjection(srs.ExportToWkt()) 
        # 数据写出
        out_tif.GetRasterBand(1).WriteArray(ndvi_arr_float[i][::-1])  # 将数据写入内存,此时没有写入硬盘 此处[::-1]用于图像的垂直镜像对称,避免图像颠倒
        out_tif.FlushCache()  # 将数据写入硬盘
        out_tif = None  # 注意必须关闭tif文件

这样便可以得到正确输出的影像:

基于Python实现nc批量转tif格式

当然,我们除了在写入时做垂直镜像操作之外,还可以利用python对图像进行几何变换来实现翻转。具体代码如下:

图像水平翻转:

#  图像水平翻转
    im_data_hor = np.flip(im_data, axis=2)
    hor_path = train_image_path + "\\" + str(tran_num) + imageList[i][-4:]
    writeTiff(im_data_hor, im_geotrans, im_proj, hor_path)

标签水平翻转: 

#  标签水平翻转
    Hor = cv2.flip(label, 1)
    hor_path = train_label_path + "\\" + str(tran_num) + labelList[i][-4:]
    cv2.imwrite(hor_path, Hor)
    tran_num += 1

图像垂直翻转:

#  图像垂直翻转
    im_data_vec = np.flip(im_data, axis=1)
    vec_path = train_image_path + "\\" + str(tran_num) + imageList[i][-4:]
    writeTiff(im_data_vec, im_geotrans, im_proj, vec_path)

标签垂直翻转:

#  标签垂直翻转
    Vec = cv2.flip(label, 0)
    vec_path = train_label_path + "\\" + str(tran_num) + labelList[i][-4:]
    cv2.imwrite(vec_path, Vec)
    tran_num += 1

图像镜像翻转:

#  图像对角镜像
    im_data_dia = np.flip(im_data_vec, axis=2)
    dia_path = train_image_path + "\\" + str(tran_num) + imageList[i][-4:]
    writeTiff(im_data_dia, im_geotrans, im_proj, dia_path)

标签镜像翻转:

#  标签对角镜像
    Dia = cv2.flip(label, -1)
    dia_path = train_label_path + "\\" + str(tran_num) + labelList[i][-4:]
    cv2.imwrite(dia_path, Dia)
    tran_num += 1

若是输出路径的文件夹没有建立好,则会报如下错误。当然,为了减少工作量,也可以定义一个函数,如果路径不存在则自动创建,就可以解决这个问题。

基于Python实现nc批量转tif格式

到此这篇关于基于Python实现nc批量转tif格式的文章就介绍到这了,更多相关Python nc转tif内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python判断字符串是否包含子字符串的方法
Mar 24 Python
python3 图片referer防盗链的实现方法
Mar 12 Python
python3+dlib实现人脸识别和情绪分析
Apr 21 Python
Python实现的拟合二元一次函数功能示例【基于scipy模块】
May 15 Python
在windows下Python打印彩色字体的方法
May 15 Python
对python的文件内注释 help注释方法
May 23 Python
详解Python字典小结
Oct 20 Python
基于Python实现2种反转链表方法代码实例
Jul 06 Python
python使用Word2Vec进行情感分析解析
Jul 31 Python
基于Python实现体育彩票选号器功能代码实例
Sep 16 Python
如何使用Python调整图像大小
Sep 26 Python
Python 中 sorted 如何自定义比较逻辑
Feb 02 Python
LyScript实现绕过反调试保护的示例详解
Aug 14 #Python
LeetCode189轮转数组python示例
Aug 05 #Python
python语言中pandas字符串分割str.split()函数
Aug 05 #Python
python绘制云雨图raincloud plot
Aug 05 #Python
python计算列表元素与乘积详情
Aug 05 #Python
Pygame游戏开发之太空射击实战敌人精灵篇
Aug 05 #Python
python playwrigh框架入门安装使用
Jul 23 #Python
You might like
谈谈PHP语法(5)
2006/10/09 PHP
PHP 高手之路(一)
2006/10/09 PHP
PHP 简单日历实现代码
2009/10/28 PHP
php中判断字符串是否全是中文或含有中文的实现代码
2011/09/16 PHP
apache mysql php 源码编译使用方法
2012/05/03 PHP
php实现通用的从数据库表读取数据到数组的函数实例
2015/03/21 PHP
PHP版本升级到7.x后wordpress的一些修改及wordpress技巧
2015/12/25 PHP
PHP类的声明与实例化及构造方法与析构方法详解
2016/01/26 PHP
php快速导入大量数据的实例方法
2019/09/23 PHP
img的onload的另类用法
2008/01/10 Javascript
javascript 数组的方法集合
2008/06/05 Javascript
jQuery 处理页面的事件详解
2015/01/20 Javascript
js实现简单排列组合的方法
2016/01/27 Javascript
详解vue-cli快速构建项目以及引入bootstrap、jq
2017/05/26 Javascript
Webpack框架核心概念(知识点整理)
2017/12/22 Javascript
JavaScript函数式编程(Functional Programming)箭头函数(Arrow functions)用法分析
2019/05/22 Javascript
[54:10]完美世界DOTA2联赛PWL S2 Magma vs FTD 第二场 11.29
2020/12/03 DOTA
Python列表推导式与生成器表达式用法示例
2018/02/08 Python
Python cookbook(数据结构与算法)保存最后N个元素的方法
2018/02/13 Python
深入浅析Python的类
2018/06/22 Python
pycham查看程序执行的时间方法
2018/11/29 Python
python中调试或排错的五种方法示例
2019/09/12 Python
python ctypes库2_指定参数类型和返回类型详解
2019/11/19 Python
Django通用类视图实现忘记密码重置密码功能示例
2019/12/17 Python
全球采购的街头服饰和帽子:Urban Excess
2020/10/28 全球购物
c/c++某大公司的两道笔试题
2014/02/02 面试题
Ajax的优点和缺点
2014/11/21 面试题
职专应届生求职信
2013/11/16 职场文书
写好自荐信的几个要点
2013/12/26 职场文书
《得道多助,失道寡助》教学反思
2014/04/19 职场文书
活动总结模板
2014/05/09 职场文书
爱心倡议书范文
2014/05/12 职场文书
学校运动会霸气口号
2014/06/07 职场文书
社区公民道德宣传日活动总结
2015/03/23 职场文书
入队仪式主持词
2015/07/04 职场文书
TS 类型兼容教程示例详解
2022/09/23 Javascript