基于Python实现nc批量转tif格式


Posted in Python onAugust 14, 2022

由于做项目需要运用到netCDF格式的气象数据,而ArcGIS中需要用栅格影像进行处理,对于较多的文件,ArcGIS一个个手动转换过于繁琐,因此我们采用Python进行转换,当然也可以采用matlab进行转换。

首先需要安装下面几个库:

import os
import netCDF4 as nc
import numpy as np
from osgeo import gdal, osr, ogr
import glob

我们可以在下面网址中寻找对应python安装版本的安装包,下载后,在pycharm控制台中直接安装即可。例如pip install netCDF4-1.5.8-cp39-cp39-

win_amd64.whl

https://www.lfd.uci.edu/~gohlke/pythonlibs/

安装之后即可进行转换:

def nc2tif(data, Output_folder):
    tmp_data = nc.Dataset(data)  # 利用.Dataset()方法读取nc数据
    print('tmp_data', tmp_data)
 
    Lat_data = tmp_data.variables['lat'][:]
    Lon_data = tmp_data.variables['lon'][:]
    # print(Lat_data)
    # print(Lon_data)
 
    tmp_arr = np.asarray(tmp_data.variables['temp'])
 
    # 影像的左上角&右下角坐标
    Lonmin, Latmax, Lonmax, Latmin = [Lon_data.min(), Lat_data.max(), Lon_data.max(), Lat_data.min()]
    # print(Lonmin, Latmax, Lonmax, Latmin)
 
    # 分辨率计算
    Num_lat = len(Lat_data)  # 5146
    Num_lon = len(Lon_data)  # 7849
    Lat_res = (Latmax - Latmin) / (float(Num_lat) - 1)
    Lon_res = (Lonmax - Lonmin) / (float(Num_lon) - 1)
    # print(Num_lat, Num_lon)
    # print(Lat_res, Lon_res)
 
    for i in range(len(tmp_arr[:])):
        # i=0,1,2,3,4,5,6,7,8,9,...
        # 创建tif文件
        driver = gdal.GetDriverByName('GTiff')
        out_tif_name = Output_folder + '\\' + data.split('\\')[-1].split('.')[0] + '_' + str(i + 1) + '.tif'
        out_tif = driver.Create(out_tif_name, Num_lon, Num_lat, 1, gdal.GDT_Int16)
 
        # 设置影像的显示范围
        # Lat_re前需要添加负号
        geotransform = (Lonmin, Lon_res, 0.0, Latmax, 0.0, -Lat_res)
        out_tif.SetGeoTransform(geotransform)
 
        # 定义投影
        prj = osr.SpatialReference()
        prj.ImportFromEPSG(4326)  # WGS84
        out_tif.SetProjection(prj.ExportToWkt())
 
        # 数据导出
        out_tif.GetRasterBand(1).WriteArray(tmp_arr[i])  # 将数据写入内存,此时没有写入到硬盘
        out_tif.FlushCache()  # 将数据写入到硬盘
        out_tif = None  # 关闭tif文件
 
def main():
    Input_folder = r"E:\competition\航天宏图\2-meter air temperature_CMFD\Data_forcing_01yr_010deg\\"
    # Input_folder = r"E:\competition\航天宏图\2-meter air temperature_CMFD\Data_forcing_01mo_010deg\\"
    Output_folder = r"E:\competition\航天宏图\2-meter air temperature_CMFD\tif\\"
 
    # 读取所有数据
    data_list = glob.glob(os.path.join(Input_folder + '*.nc'))
    print(data_list)
 
    for i in range(len(data_list)):
        data = data_list[i]
        nc2tif(data, Output_folder)
        print(data + '转tif成功')

值得注意的是,tmp_arr = np.asarray(tmp_data.variables['temp'])中的temp可以根据需要转换的波段进行选择,我们可以在读取数据之后print一下,找到对应的波段进行替换即可。如下图中我们应该选择的就是temp。

基于Python实现nc批量转tif格式

完成上述步骤即可得到所需的tif图像:

基于Python实现nc批量转tif格式

基于Python实现nc批量转tif格式

在上述代码中,经过处理的影像是倒置的,可能是处理过程中仿射矩阵读写错误导致的。因此我们可以在写入影像的时候,进行影像的垂直镜像操作即可:WriteArray(ndvi_arr_float[i][::-1]) 

def NC_to_tiffs(data, Output_folder):
    nc_data_obj = nc.Dataset(data)
    Lon = nc_data_obj.variables['lon'][:]
    Lat = nc_data_obj.variables['lat'][:]
    ndvi_arr = np.asarray(nc_data_obj.variables['temp'])  
    ndvi_arr_float = ndvi_arr.astype(float) / 10000  之间
    # 影像的左上角和右下角坐标
    LonMin, LatMax, LonMax, LatMin = [Lon.min(), Lat.max(), Lon.max(), Lat.min()]
    # 分辨率计算
    N_Lat = len(Lat)
    N_Lon = len(Lon)
    Lon_Res = (LonMax - LonMin) / (float(N_Lon) - 1)
    Lat_Res = (LatMax - LatMin) / (float(N_Lat) - 1)
    for i in range(len(ndvi_arr[:])):
        driver = gdal.GetDriverByName('GTiff')
        out_tif_name = Output_folder + '\\' + data.split('\\')[-1].split('.')[0] + '_' + str(i + 1) + '.tif'
        out_tif = driver.Create(out_tif_name, N_Lon, N_Lat, 1, gdal.GDT_Float32)
       
        geotransform = (LonMin, Lon_Res, 0, LatMax, 0, -Lat_Res)
        out_tif.SetGeoTransform(geotransform)
      
        srs = osr.SpatialReference()
        srs.ImportFromEPSG(4326) 
        out_tif.SetProjection(srs.ExportToWkt()) 
        # 数据写出
        out_tif.GetRasterBand(1).WriteArray(ndvi_arr_float[i][::-1])  # 将数据写入内存,此时没有写入硬盘 此处[::-1]用于图像的垂直镜像对称,避免图像颠倒
        out_tif.FlushCache()  # 将数据写入硬盘
        out_tif = None  # 注意必须关闭tif文件

这样便可以得到正确输出的影像:

基于Python实现nc批量转tif格式

当然,我们除了在写入时做垂直镜像操作之外,还可以利用python对图像进行几何变换来实现翻转。具体代码如下:

图像水平翻转:

#  图像水平翻转
    im_data_hor = np.flip(im_data, axis=2)
    hor_path = train_image_path + "\\" + str(tran_num) + imageList[i][-4:]
    writeTiff(im_data_hor, im_geotrans, im_proj, hor_path)

标签水平翻转: 

#  标签水平翻转
    Hor = cv2.flip(label, 1)
    hor_path = train_label_path + "\\" + str(tran_num) + labelList[i][-4:]
    cv2.imwrite(hor_path, Hor)
    tran_num += 1

图像垂直翻转:

#  图像垂直翻转
    im_data_vec = np.flip(im_data, axis=1)
    vec_path = train_image_path + "\\" + str(tran_num) + imageList[i][-4:]
    writeTiff(im_data_vec, im_geotrans, im_proj, vec_path)

标签垂直翻转:

#  标签垂直翻转
    Vec = cv2.flip(label, 0)
    vec_path = train_label_path + "\\" + str(tran_num) + labelList[i][-4:]
    cv2.imwrite(vec_path, Vec)
    tran_num += 1

图像镜像翻转:

#  图像对角镜像
    im_data_dia = np.flip(im_data_vec, axis=2)
    dia_path = train_image_path + "\\" + str(tran_num) + imageList[i][-4:]
    writeTiff(im_data_dia, im_geotrans, im_proj, dia_path)

标签镜像翻转:

#  标签对角镜像
    Dia = cv2.flip(label, -1)
    dia_path = train_label_path + "\\" + str(tran_num) + labelList[i][-4:]
    cv2.imwrite(dia_path, Dia)
    tran_num += 1

若是输出路径的文件夹没有建立好,则会报如下错误。当然,为了减少工作量,也可以定义一个函数,如果路径不存在则自动创建,就可以解决这个问题。

基于Python实现nc批量转tif格式

到此这篇关于基于Python实现nc批量转tif格式的文章就介绍到这了,更多相关Python nc转tif内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
一篇不错的Python入门教程
Feb 08 Python
python调用cmd复制文件代码分享
Dec 27 Python
使用Python开发windows GUI程序入门实例
Oct 23 Python
Python写的Tkinter程序屏幕居中方法
Mar 10 Python
python中Genarator函数用法分析
Apr 08 Python
Python 字符串与二进制串的相互转换示例
Jul 23 Python
Python中的函数式编程:不可变的数据结构
Oct 08 Python
python整小时 整天时间戳获取算法示例
Feb 20 Python
pycharm安装及如何导入numpy
Apr 03 Python
Python3安装模块报错Microsoft Visual C++ 14.0 is required的解决方法
Jul 28 Python
详解Tensorflow不同版本要求与CUDA及CUDNN版本对应关系
Aug 04 Python
python Tkinter的简单入门教程
Apr 11 Python
LyScript实现绕过反调试保护的示例详解
Aug 14 #Python
LeetCode189轮转数组python示例
Aug 05 #Python
python语言中pandas字符串分割str.split()函数
Aug 05 #Python
python绘制云雨图raincloud plot
Aug 05 #Python
python计算列表元素与乘积详情
Aug 05 #Python
Pygame游戏开发之太空射击实战敌人精灵篇
Aug 05 #Python
python playwrigh框架入门安装使用
Jul 23 #Python
You might like
无线电广播与收音机发展的历史回眸
2021/03/02 无线电
php查看session内容的函数
2008/08/27 PHP
一个PHP的QRcode类与大家分享
2011/11/13 PHP
兼容ie6浏览器的php下载文件代码分享
2014/07/14 PHP
javascript 简单抽屉效果的实现代码
2010/03/09 Javascript
JS 获取浏览器和屏幕宽高等信息的实现思路及代码
2013/07/31 Javascript
一看就懂:jsonp详解
2015/06/01 Javascript
jQuery height()、innerHeight()、outerHeight()函数的区别详解
2016/05/23 Javascript
vue.js入门教程之基础语法小结
2016/09/01 Javascript
用jquery快速解决IE输入框不能输入的问题
2016/10/04 Javascript
JS匿名函数实例分析
2016/11/26 Javascript
Angularjs中使用layDate日期控件示例
2017/01/11 Javascript
关于Ajax的原理以及代码封装详解
2017/09/08 Javascript
AngularJS中下拉框的基本用法示例
2017/10/11 Javascript
第一个Vue插件从封装到发布
2017/11/22 Javascript
webpack中如何使用雪碧图的示例代码
2018/11/11 Javascript
JavaScript多种图形实现代码实例
2020/06/28 Javascript
实例讲解React 组件
2020/07/07 Javascript
python 解析html之BeautifulSoup
2009/07/07 Python
浅谈Python的Django框架中的缓存控制
2015/07/24 Python
python编程测试电脑开启最大线程数实例代码
2018/02/09 Python
彻底理解Python中的yield关键字
2019/04/01 Python
python 将字符串完成特定的向右移动方法
2019/06/11 Python
Python基于xlutils修改表格内容过程解析
2020/07/28 Python
python获取linux系统信息的三种方法
2020/10/14 Python
真正了解CSS3背景下的@font face规则
2017/05/04 HTML / CSS
CK加拿大官网:Calvin Klein加拿大
2020/03/14 全球购物
硕士研究生求职自荐信范文
2014/03/11 职场文书
最经典的商业地产项目广告词
2014/03/13 职场文书
房务中心文员岗位职责
2014/04/16 职场文书
安全教育演讲稿
2014/05/09 职场文书
八项规定对照检查材料
2014/08/31 职场文书
党员进社区活动总结
2015/05/07 职场文书
长征观后感
2015/06/09 职场文书
python 办公自动化——基于pyqt5和openpyxl统计符合要求的名单
2021/05/25 Python
SpringBoot快速入门详解
2021/07/21 Java/Android