基于Python实现nc批量转tif格式


Posted in Python onAugust 14, 2022

由于做项目需要运用到netCDF格式的气象数据,而ArcGIS中需要用栅格影像进行处理,对于较多的文件,ArcGIS一个个手动转换过于繁琐,因此我们采用Python进行转换,当然也可以采用matlab进行转换。

首先需要安装下面几个库:

import os
import netCDF4 as nc
import numpy as np
from osgeo import gdal, osr, ogr
import glob

我们可以在下面网址中寻找对应python安装版本的安装包,下载后,在pycharm控制台中直接安装即可。例如pip install netCDF4-1.5.8-cp39-cp39-

win_amd64.whl

https://www.lfd.uci.edu/~gohlke/pythonlibs/

安装之后即可进行转换:

def nc2tif(data, Output_folder):
    tmp_data = nc.Dataset(data)  # 利用.Dataset()方法读取nc数据
    print('tmp_data', tmp_data)
 
    Lat_data = tmp_data.variables['lat'][:]
    Lon_data = tmp_data.variables['lon'][:]
    # print(Lat_data)
    # print(Lon_data)
 
    tmp_arr = np.asarray(tmp_data.variables['temp'])
 
    # 影像的左上角&右下角坐标
    Lonmin, Latmax, Lonmax, Latmin = [Lon_data.min(), Lat_data.max(), Lon_data.max(), Lat_data.min()]
    # print(Lonmin, Latmax, Lonmax, Latmin)
 
    # 分辨率计算
    Num_lat = len(Lat_data)  # 5146
    Num_lon = len(Lon_data)  # 7849
    Lat_res = (Latmax - Latmin) / (float(Num_lat) - 1)
    Lon_res = (Lonmax - Lonmin) / (float(Num_lon) - 1)
    # print(Num_lat, Num_lon)
    # print(Lat_res, Lon_res)
 
    for i in range(len(tmp_arr[:])):
        # i=0,1,2,3,4,5,6,7,8,9,...
        # 创建tif文件
        driver = gdal.GetDriverByName('GTiff')
        out_tif_name = Output_folder + '\\' + data.split('\\')[-1].split('.')[0] + '_' + str(i + 1) + '.tif'
        out_tif = driver.Create(out_tif_name, Num_lon, Num_lat, 1, gdal.GDT_Int16)
 
        # 设置影像的显示范围
        # Lat_re前需要添加负号
        geotransform = (Lonmin, Lon_res, 0.0, Latmax, 0.0, -Lat_res)
        out_tif.SetGeoTransform(geotransform)
 
        # 定义投影
        prj = osr.SpatialReference()
        prj.ImportFromEPSG(4326)  # WGS84
        out_tif.SetProjection(prj.ExportToWkt())
 
        # 数据导出
        out_tif.GetRasterBand(1).WriteArray(tmp_arr[i])  # 将数据写入内存,此时没有写入到硬盘
        out_tif.FlushCache()  # 将数据写入到硬盘
        out_tif = None  # 关闭tif文件
 
def main():
    Input_folder = r"E:\competition\航天宏图\2-meter air temperature_CMFD\Data_forcing_01yr_010deg\\"
    # Input_folder = r"E:\competition\航天宏图\2-meter air temperature_CMFD\Data_forcing_01mo_010deg\\"
    Output_folder = r"E:\competition\航天宏图\2-meter air temperature_CMFD\tif\\"
 
    # 读取所有数据
    data_list = glob.glob(os.path.join(Input_folder + '*.nc'))
    print(data_list)
 
    for i in range(len(data_list)):
        data = data_list[i]
        nc2tif(data, Output_folder)
        print(data + '转tif成功')

值得注意的是,tmp_arr = np.asarray(tmp_data.variables['temp'])中的temp可以根据需要转换的波段进行选择,我们可以在读取数据之后print一下,找到对应的波段进行替换即可。如下图中我们应该选择的就是temp。

基于Python实现nc批量转tif格式

完成上述步骤即可得到所需的tif图像:

基于Python实现nc批量转tif格式

基于Python实现nc批量转tif格式

在上述代码中,经过处理的影像是倒置的,可能是处理过程中仿射矩阵读写错误导致的。因此我们可以在写入影像的时候,进行影像的垂直镜像操作即可:WriteArray(ndvi_arr_float[i][::-1]) 

def NC_to_tiffs(data, Output_folder):
    nc_data_obj = nc.Dataset(data)
    Lon = nc_data_obj.variables['lon'][:]
    Lat = nc_data_obj.variables['lat'][:]
    ndvi_arr = np.asarray(nc_data_obj.variables['temp'])  
    ndvi_arr_float = ndvi_arr.astype(float) / 10000  之间
    # 影像的左上角和右下角坐标
    LonMin, LatMax, LonMax, LatMin = [Lon.min(), Lat.max(), Lon.max(), Lat.min()]
    # 分辨率计算
    N_Lat = len(Lat)
    N_Lon = len(Lon)
    Lon_Res = (LonMax - LonMin) / (float(N_Lon) - 1)
    Lat_Res = (LatMax - LatMin) / (float(N_Lat) - 1)
    for i in range(len(ndvi_arr[:])):
        driver = gdal.GetDriverByName('GTiff')
        out_tif_name = Output_folder + '\\' + data.split('\\')[-1].split('.')[0] + '_' + str(i + 1) + '.tif'
        out_tif = driver.Create(out_tif_name, N_Lon, N_Lat, 1, gdal.GDT_Float32)
       
        geotransform = (LonMin, Lon_Res, 0, LatMax, 0, -Lat_Res)
        out_tif.SetGeoTransform(geotransform)
      
        srs = osr.SpatialReference()
        srs.ImportFromEPSG(4326) 
        out_tif.SetProjection(srs.ExportToWkt()) 
        # 数据写出
        out_tif.GetRasterBand(1).WriteArray(ndvi_arr_float[i][::-1])  # 将数据写入内存,此时没有写入硬盘 此处[::-1]用于图像的垂直镜像对称,避免图像颠倒
        out_tif.FlushCache()  # 将数据写入硬盘
        out_tif = None  # 注意必须关闭tif文件

这样便可以得到正确输出的影像:

基于Python实现nc批量转tif格式

当然,我们除了在写入时做垂直镜像操作之外,还可以利用python对图像进行几何变换来实现翻转。具体代码如下:

图像水平翻转:

#  图像水平翻转
    im_data_hor = np.flip(im_data, axis=2)
    hor_path = train_image_path + "\\" + str(tran_num) + imageList[i][-4:]
    writeTiff(im_data_hor, im_geotrans, im_proj, hor_path)

标签水平翻转: 

#  标签水平翻转
    Hor = cv2.flip(label, 1)
    hor_path = train_label_path + "\\" + str(tran_num) + labelList[i][-4:]
    cv2.imwrite(hor_path, Hor)
    tran_num += 1

图像垂直翻转:

#  图像垂直翻转
    im_data_vec = np.flip(im_data, axis=1)
    vec_path = train_image_path + "\\" + str(tran_num) + imageList[i][-4:]
    writeTiff(im_data_vec, im_geotrans, im_proj, vec_path)

标签垂直翻转:

#  标签垂直翻转
    Vec = cv2.flip(label, 0)
    vec_path = train_label_path + "\\" + str(tran_num) + labelList[i][-4:]
    cv2.imwrite(vec_path, Vec)
    tran_num += 1

图像镜像翻转:

#  图像对角镜像
    im_data_dia = np.flip(im_data_vec, axis=2)
    dia_path = train_image_path + "\\" + str(tran_num) + imageList[i][-4:]
    writeTiff(im_data_dia, im_geotrans, im_proj, dia_path)

标签镜像翻转:

#  标签对角镜像
    Dia = cv2.flip(label, -1)
    dia_path = train_label_path + "\\" + str(tran_num) + labelList[i][-4:]
    cv2.imwrite(dia_path, Dia)
    tran_num += 1

若是输出路径的文件夹没有建立好,则会报如下错误。当然,为了减少工作量,也可以定义一个函数,如果路径不存在则自动创建,就可以解决这个问题。

基于Python实现nc批量转tif格式

到此这篇关于基于Python实现nc批量转tif格式的文章就介绍到这了,更多相关Python nc转tif内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
py中的目录与文件判别代码
Jul 16 Python
用python实现面向对像的ASP程序实例
Nov 10 Python
Python虚拟环境Virtualenv使用教程
May 18 Python
Django实现快速分页的方法实例
Oct 22 Python
python语音识别实践之百度语音API
Aug 30 Python
python语言基本语句用法总结
Jun 11 Python
多版本python的pip 升级后, pip2 pip3 与python版本失配解决方法
Sep 11 Python
tensorflow 实现数据类型转换
Feb 17 Python
Win10下用Anaconda安装TensorFlow(图文教程)
Jun 18 Python
解决Keras TensorFlow 混编中 trainable=False设置无效问题
Jun 28 Python
Python的控制结构之For、While、If循环问题
Jun 30 Python
python​格式化字符串
Apr 20 Python
LyScript实现绕过反调试保护的示例详解
Aug 14 #Python
LeetCode189轮转数组python示例
Aug 05 #Python
python语言中pandas字符串分割str.split()函数
Aug 05 #Python
python绘制云雨图raincloud plot
Aug 05 #Python
python计算列表元素与乘积详情
Aug 05 #Python
Pygame游戏开发之太空射击实战敌人精灵篇
Aug 05 #Python
python playwrigh框架入门安装使用
Jul 23 #Python
You might like
社区(php&&mysql)五
2006/10/09 PHP
PHP以mysqli方式连接类完整代码实例
2014/07/15 PHP
thinkphp的静态缓存用法分析
2014/11/29 PHP
PHP扩展Memcache分布式部署方案
2015/12/06 PHP
Yii输入正确验证码却验证失败的解决方法
2017/06/06 PHP
javascript用户注册提示效果的简单实例
2013/08/17 Javascript
jquery 获取dom固定元素 添加样式的简单实例
2014/02/04 Javascript
轻松实现jquery选项卡切换效果
2016/10/10 Javascript
AngularJS实现DOM元素的显示与隐藏功能
2016/11/22 Javascript
Bootstrap基本样式学习笔记之表格(2)
2016/12/07 Javascript
AngularJS中$http使用的简单介绍
2017/03/17 Javascript
jQuery+datatables插件实现ajax加载数据与增删改查功能示例
2018/04/17 jQuery
vue导入.md文件的步骤(markdown转HTML)
2020/12/31 Vue.js
[08:44]和酒神一起战斗 DOTA2教你做大人
2014/03/27 DOTA
[36:14]DOTA2上海特级锦标赛D组小组赛#1 EG VS COL第二局
2016/02/28 DOTA
[51:32]Optic vs Serenity 2018国际邀请赛淘汰赛BO3 第一场 8.22
2018/08/23 DOTA
[01:01:52]DOTA2-DPC中国联赛正赛 iG vs LBZS BO3 第一场 3月4日
2021/03/11 DOTA
python的id()函数介绍
2013/02/10 Python
python连接mysql调用存储过程示例
2014/03/05 Python
python中使用urllib2伪造HTTP报头的2个方法
2014/07/07 Python
编写Python脚本抓取网络小说来制作自己的阅读器
2015/08/20 Python
Python for Informatics 第11章 正则表达式(一)
2016/04/21 Python
python使用 HTMLTestRunner.py生成测试报告
2017/10/20 Python
深入理解Python中range和xrange的区别
2017/11/26 Python
python中metaclass原理与用法详解
2019/06/25 Python
Python 实现数据结构-循环队列的操作方法
2019/07/17 Python
python如何将多个PDF进行合并
2019/08/13 Python
python输出数组中指定元素的所有索引示例
2019/12/06 Python
使用python快速实现不同机器间文件夹共享方式
2019/12/22 Python
python手机号前7位归属地爬虫代码实例
2020/03/31 Python
天猫精选:上天猫,就够了
2016/09/21 全球购物
linux面试题参考答案(5)
2014/09/01 面试题
动物科学专业毕业生的自我评价
2013/11/29 职场文书
正风肃纪查摆剖析材料
2014/10/10 职场文书
上课讲话检讨书范文
2015/05/07 职场文书
创业计划书之电动车企业
2019/10/11 职场文书