python绘制云雨图raincloud plot


Posted in Python onAugust 05, 2022

官方github: https://github.com/RainCloudPlots/RainCloudPlots

Raincloud 的 Python 实现是一个名为 PtitPrince 的包,它写在 seaborn 之上,这是一个 Python 绘图库,用于从 pandas 数据帧中获取漂亮的绘图。

import pandas as pd
import seaborn as sns
import os
import matplotlib.pyplot as plt
#sns.set(style="darkgrid")
#sns.set(style="whitegrid")
#sns.set_style("white")
sns.set(style="whitegrid",font_scale=2)
import matplotlib.collections as clt
import ptitprince as pt
#图片保存及输出设置
savefigs = True
figs_dir = '../figs/tutorial_python'
if savefigs:
    # Make the figures folder if it doesn't yet exist
    #如果没有找到文件夹,先创建此文件夹
    if not os.path.isdir('../figs/tutorial_python'):
        os.makedirs('../figs/tutorial_python')

def export_fig(axis,text, fname):
    if savefigs:
        axis.text()
        axis.savefig(fname, bbox_inches='tight')
df = pd.read_csv ("simdat.csv", sep= ",")
df.head()

python绘制云雨图raincloud plot

该图可以让读者初步了解数据集:哪个组的平均值更大,这种差异是否可能显着。 此图中仅显示每组分数的平均值和标准差。

f, ax = plt.subplots(figsize=(7, 7))
sns.barplot(x = "group", y = "score", data = df, capsize= .1)
plt.title("Figure P1\n Bar Plot")
if savefigs:
    plt.savefig('.\\figs\\tutorial_python\\figureP01.png', bbox_inches='tight')

python绘制云雨图raincloud plot

为了了解我们的数据集的分布,我们可以绘制一个“云”,即直方图的平滑版本:

# plotting the clouds
f, ax = plt.subplots(figsize=(7, 5))
dy="group" 
dx="score"
ort="h"
pal = sns.color_palette(n_colors=1)
ax=pt.half_violinplot(x=dx, y=dy, data=df, palette=pal, bw=.2, cut=0., scale="area", width=.6, inner=None, orient=ort)
plt.title("Figure P2\n Basic Rainclouds")
if savefigs:
    plt.savefig('.\\figs\\tutorial_python\\figureP02.png', bbox_inches='tight')

python绘制云雨图raincloud plot

为了更精确地了解分布并说明数据中的潜在异常值或其他模式,我们现在添加“雨”,即数据点的简单单维表示:

# adding the rain
f, ax=plt.subplots(figsize=(7, 5))
ax=pt.half_violinplot(x=dx, y=dy, data=df, palette=pal, bw=.2, cut=0., scale="area", width=.6, inner=None, orient=ort)
ax=sns.stripplot(x=dx, y=dy, data=df, palette=pal, edgecolor="white", size=3, jitter=0, zorder=0, orient=ort)
plt.title("Figure P3\n Raincloud Without Jitter")
if savefigs:
    plt.savefig('.\\figs\\tutorial_python\\figureP03.png', bbox_inches='tight')

python绘制云雨图raincloud plot

# adding jitter to the rain
f, ax =plt.subplots(figsize=(7, 5))
ax=pt.half_violinplot(x=dx, y=dy, data=df, palette=pal, bw=.2, cut=0., scale="area", width=.6, inner=None, orient=ort)
ax=sns.stripplot(x=dx, y=dy, data=df, palette=pal, edgecolor="white", size=3, jitter=1, zorder=0, orient=ort)
plt.title("Figure P4\n Raincloud with Jittered Data")
if savefigs:
    plt.savefig('.\\figs\\tutorial_python\\figureP04.png', bbox_inches='tight')

python绘制云雨图raincloud plot

这样可以很好地了解数据点的分布情况,但中位数和四分位数并不明显,很难一目了然地确定统计差异。 因此,我们添加了一个“空”箱线图来显示中位数、四分位数和异常值:

#adding the boxplot with quartiles
f, ax=plt.subplots(figsize=(7, 5))
ax=pt.half_violinplot(x=dx, y=dy, data=df, palette=pal, bw=.2, cut=0.,
                      scale="area", width=.6, inner=None, orient=ort)
ax=sns.stripplot(x=dx, y=dy, data=df, palette=pal, edgecolor="white",
                 size=3, jitter=1, zorder=0, orient=ort)
ax=sns.boxplot(x=dx, y=dy, data=df, color="black", width=.15, zorder=10,
               showcaps=True, boxprops={'facecolor':'none',"zorder":10},
               showfliers=True, whiskerprops{'linewidth':2,"zorder":10},
               saturation=1, orient=ort)
plt.title("Figure P5\n Raincloud with Boxplot")
if savefigs:
    plt.savefig('../figs/tutorial_python/figureP05.png', bbox_inches='tight')

python绘制云雨图raincloud plot

现在我们可以设置一个调色板来表征两组:

#adding color
pal="Set2"
f, ax=plt.subplots(figsize=(7, 5))
ax=pt.half_violinplot(x=dx, y=dy, data=df, palette=pal, bw=.2, cut=0.,
                      scale="area", width=.6, inner=None, orient=ort)
ax=sns.stripplot(x=dx, y=dy, data=df, palette=pal, edgecolor="white",
                 size=3, jitter=1, zorder=0, orient=ort)
ax=sns.boxplot(x=dx, y=dy, data=df, color="black", width=.15, zorder=10,
              showcaps=True, boxprops={'facecolor':'none',"zorder":10},
              showfliers=True, whiskerprops={'linewidth':2,"zorder":10},
              saturation=1, orient=ort)
plt.title("Figure P6\n Tweaking the Colour of Your Raincloud")

python绘制云雨图raincloud plot

我们可以使用函数 pt.Raincloud 来添加一些自动化:

#same thing with a single command: now x **must** be the categorical value
dx="group"; dy="score"; ort="h"; pal="Set2"; sigma=.2
f, ax=plt.subplots(figsize=(7, 5))
pt.RainCloud(x=dx, y=dy, data=df, palette=pal, bw=sigma,
             width_viol = .6, ax = ax, orient = ort)
plt.title("Figure P7\n Using the pt.Raincloud function")
if savefigs:
    plt.savefig('../figs/tutorial_python/figureP07.png', bbox_inches='tight')

python绘制云雨图raincloud plot

‘move’ 参数可用于移动箱线图下方的雨量,在某些情况下提供更好的原始数据可见性:

#moving the rain below the boxplot
dx="group"; dy="score"; ort="h"; pal="Set2"; sigma=.2
f,ax=plt.subplots(figsize=(7, 5))
ax=pt.RainCloud(x=dx, y=dy, data=df, palette=pal, bw=sigma,
                 width_viol=.6, ax=ax, orient=ort, move=.2)
plt.title("Figure P8\n Rainclouds with Shifted Rain")

python绘制云雨图raincloud plot

此外,raincloud 函数同样适用于列表或 np.array,如果您更喜欢使用它们而不是数据框输入:

# Usage with a list/np.array input
dx=list(df["group"]); dy=list(df["score"])
f, ax=plt.subplots(figsize=(7, 5))
ax=pt.RainCloud(x=dx, y=dy, palette=pal, bw=sigma,
                 width_viol=.6, ax=ax, orient=ort)
plt.title("Figure P9\n Rainclouds with List/Array Inputs")

python绘制云雨图raincloud plot

对于某些数据,您可能希望将雨云的方向翻转为“petit prince”图。 您可以使用 pt.RainCloud 函数中的 ‘orient’ 标志来执行此操作:

# Changing orientation
dx="group"; dy="score"; ort="v"; pal="Set2"; sigma=.2
f, ax=plt.subplots(figsize=(7, 5))
ax=pt.RainCloud(x=dx, y=dy, data=df, palette=pal, bw=sigma,
                 width_viol=.5, ax=ax, orient=ort)
plt.title("Figure P10\n Flipping your Rainclouds")

python绘制云雨图raincloud plot

还可以更改用于生成数据概率分布函数的平滑核。 为此,您调整 sigma 参数:

#changing cloud smoothness
dx="group"; dy="score"; ort="h"; pal="Set2"; sigma=.05
f, ax=plt.subplots(figsize=(7, 5))
ax=pt.RainCloud(x=dx, y=dy, data=df, palette=pal, bw=sigma,
                 width_viol=.6, ax=ax, orient=ort)
plt.title("Figure P11\n Customizing Raincloud Smoothness")

python绘制云雨图raincloud plot

最后,使用 pointplot 标志,您可以添加一条连接组平均值的线。 这对于更复杂的数据集很有用,例如重复测量或因子数据。 下面我们通过改变各个图的色调、不透明度或闪避元素来说明使用雨云绘制此类数据的几种不同方法:

#adding a red line connecting the groups' mean value (useful for longitudinal data)
dx="group"; dy="score"; ort="h"; pal="Set2"; sigma=.2
f, ax=plt.subplots(figsize=(7, 5))
ax=pt.RainCloud(x=dx, y=dy, data=df, palette=pal, bw=sigma,
                 width_viol=.6, ax=ax, orient=ort, pointplot=True)
plt.title("Figure P12\n Adding Lineplots to Emphasize Factorial Effects")

python绘制云雨图raincloud plot

另一个灵活的选择是使用 Facet Grids 来分隔不同的组或因子水平,

如下所示:

# Rainclouds with FacetGrid
g=sns.FacetGrid(df, col="gr2", height=6)
g=g.map_dataframe(pt.RainCloud, x="group", y="score", data=df, orient="h")
g.fig.subplots_adjust(top=0.75)
g.fig.suptitle("Figure P13\n Using FacetGrid for More Complex Designs",  fontsize=26)

python绘制云雨图raincloud plot

作为一种替代方法,可以使用色调输入将不同的子组直接绘制在彼此之上,从而促进它们的比较:

# Hue Input for Subgroups
dx="group"; dy="score"; dhue="gr2"; ort="h"; pal="Set2"; sigma=.2
f, ax=plt.subplots(figsize=(12, 5))
ax=pt.RainCloud(x=dx, y=dy, hue=dhue, data=df, palette=pal, bw=sigma,
                 width_viol=.7, ax=ax, orient=ort)
plt.title("Figure P14\n Rainclouds with Subgroups")

python绘制云雨图raincloud plot

为了提高该图的可读性,我们使用相关标志(0-1 alpha 强度)调整 alpha 级别:

# Setting alpha level
f, ax=plt.subplots(figsize=(12, 5))
ax=pt.RainCloud(x=dx, y=dy, hue=dhue, data=df, palette=pal, bw=sigma,
                 width_viol=.7, ax=ax, orient=ort , alpha=.65)
plt.title("Figure P15\n Adjusting Raincloud Alpha Level")

python绘制云雨图raincloud plot

我们可以将 dodge 标志设置为 true,而不是让两个箱线图相互混淆,从而增加交互性:

#The Doge Flag
f, ax=plt.subplots(figsize=(12, 5))
ax=pt.RainCloud(x=dx, y=dy, hue=dhue, data=df, palette=pal, bw=sigma,
                 width_viol=.7, ax=ax, orient=ort , alpha=.65, dodge=True)
plt.title("Figure P16\n The Boxplot Dodge Flag")

python绘制云雨图raincloud plot

最后,我们可能希望在我们的图表中添加一个传统的线图,以帮助检测因子主效应和交互作用。

例如,我们在每个箱线图中绘制了平均值:

#same, with dodging and line
f, ax=plt.subplots(figsize=(12, 5))
ax=pt.RainCloud(x=dx, y=dy, hue=dhue, data=df, palette=pal, bw=sigma, 
                width_viol=.7, ax=ax, orient=ort , alpha=.65, 
                dodge=True, pointplot=True)
plt.title("Figure P17\n Dodged Boxplots with Lineplots")

python绘制云雨图raincloud plot

这是相同的图,但现在使用“移动”参数再次将单个观测值移动到箱线图下方:

#moving the rain under the boxplot
f, ax=plt.subplots(figsize=(12, 5))
ax=pt.RainCloud(x=dx, y=dy, hue=dhue, data=df, palette=pal, bw=sigma, 
               width_viol=.7, ax=ax, orient=ort , alpha=.65, dodge=True, 
               pointplot=True, move=.2)
plt.title("Figure P18\n Shifting the Rain with the Move Parameter")

python绘制云雨图raincloud plot

作为我们的最后一个示例,我们将考虑具有两组和三个时间点的复杂重复测量设计。 目标是说明我们复杂的相互作用和主要影响,同时保持雨云图的透明性:

# Load in the repeated data
df_rep=pd.read_csv("repeated_measures_data.csv", sep=",")
df_rep.columns=["score",  "timepoint", "group"]
df_rep.head()

python绘制云雨图raincloud plot

# Plot the repeated measures data
dx="group"; dy="score"; dhue="timepoint"; ort="h"; pal="Set2"; sigma=.2
f, ax=plt.subplots(figsize=(12, 5))
ax=pt.RainCloud(x=dx, y=dy, hue=dhue, data=df_rep, palette=pal, bw=sigma, width_viol=.7,
               ax=ax, orient=ort , alpha=.65, dodge=True, pointplot=True, move=.2)
plt.title("Figure P19\n Repeated Measures Data - Example 1")

python绘制云雨图raincloud plot

# Now with the group as hue
dx="timepoint"; dy="score"; dhue="group"
f, ax=plt.subplots(figsize=(12, 5))
ax=pt.RainCloud(x=dx, y=dy, hue=dhue, data=df_rep, palette=pal, bw=sigma, width_viol=.7,
                ax=ax, orient=ort , alpha=.65, dodge=True, pointplot=True, move=.2)
plt.title("Figure P20\n  Repeated Measures Data - Example 2")

python绘制云雨图raincloud plot

到此这篇关于python绘制云雨图raincloud plot的文章就介绍到这了,更多相关python绘制云雨图内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python链接Oracle数据库的方法
Jun 28 Python
Python中的descriptor描述器简明使用指南
Jun 02 Python
Mac中升级Python2.7到Python3.5步骤详解
Apr 27 Python
python实时分析日志的一个小脚本分享
May 07 Python
python jieba分词并统计词频后输出结果到Excel和txt文档方法
Feb 11 Python
基于python list对象中嵌套元组使用sort时的排序方法
Apr 18 Python
Python+OpenCV+pyQt5录制双目摄像头视频的实例
Jun 28 Python
对Python中画图时候的线类型详解
Jul 07 Python
Tensorflow实现酸奶销量预测分析
Jul 19 Python
python实现单目标、多目标、多尺度、自定义特征的KCF跟踪算法(实例代码)
Jan 08 Python
如何理解Python中包的引入
May 29 Python
浅谈django不使用restframework自定义接口与使用的区别
Jul 15 Python
python计算列表元素与乘积详情
Aug 05 #Python
Pygame游戏开发之太空射击实战敌人精灵篇
Aug 05 #Python
python playwrigh框架入门安装使用
Jul 23 #Python
python playwright之元素定位示例详解
Jul 23 #Python
Sentry的安装、配置、使用教程(Sentry日志手机系统)
Jul 23 #Python
Python中的 No Module named ***问题及解决
Jul 23 #Python
利用Python脚本写端口扫描器socket,python-nmap
Jul 23 #Python
You might like
Laravel框架中实现使用阿里云ACE缓存服务
2015/02/10 PHP
Laravel如何使用数据库事务及捕获事务失败后的异常详解
2017/10/23 PHP
PHP中常用的三种设计模式详解【单例模式、工厂模式、观察者模式】
2019/06/14 PHP
PHP替换Word中变量并导出PDF图片的实现方法
2020/11/26 PHP
JavaScript打字小游戏代码
2011/12/26 Javascript
Javascript对象中关于setTimeout和setInterval的this介绍
2012/07/21 Javascript
seajs1.3.0源码解析之module依赖有序加载
2012/11/07 Javascript
控制台报错object is not a function的解决方法
2014/08/24 Javascript
jQuery Validate表单验证深入学习
2015/12/18 Javascript
JavaScript实现清空(重置)文件类型INPUT元素值的方法
2016/11/17 Javascript
Bootstrap导航中表单简单实现代码
2017/03/06 Javascript
vue-loader教程介绍
2017/06/14 Javascript
JavaScript之RegExp_动力节点Java学院整理
2017/06/29 Javascript
基于Vue实现页面切换左右滑动效果
2020/06/29 Javascript
Vue组件通信的四种方式汇总
2018/02/08 Javascript
详解elementui之el-image-viewer(图片查看器)
2019/08/30 Javascript
vue  elementUI 表单嵌套验证的实例代码
2019/11/06 Javascript
关于vue-cli3打包代码后白屏的解决方案
2020/09/02 Javascript
解决VantUI popup 弹窗不弹出或无蒙层的问题
2020/11/03 Javascript
[01:09]模型精美,特效酷炫!TI9不朽宝藏Ⅰ鉴赏
2019/05/10 DOTA
使用Python编写爬虫的基本模块及框架使用指南
2016/01/20 Python
Python实现计算圆周率π的值到任意位的方法示例
2018/05/08 Python
python批量修改图片后缀的方法(png到jpg)
2018/10/25 Python
10 分钟快速入门 Python3的教程
2019/01/29 Python
django admin后台添加导出excel功能示例代码
2019/05/15 Python
使用pandas实现连续数据的离散化处理方式(分箱操作)
2019/11/22 Python
python实现TCP文件传输
2020/03/20 Python
Selenium基于PIL实现拼接滚动截图
2020/04/10 Python
Windows下PyCharm配置Anaconda环境(超详细教程)
2020/07/31 Python
Numpy实现卷积神经网络(CNN)的示例
2020/10/09 Python
关于老式浏览器兼容HTML5和CSS3的问题
2016/06/01 HTML / CSS
澳大利亚家具和家居用品在线:BROSA
2017/11/02 全球购物
C&A巴西网上商店:时尚、衣服、手机和鞋子
2020/06/07 全球购物
计算机网络工程专业职业生涯规划书
2014/03/10 职场文书
关于读书的演讲稿
2014/05/07 职场文书
五一晚会主持词
2015/07/01 职场文书