Keras在mnist上的CNN实践,并且自定义loss函数曲线图操作


Posted in Python onMay 25, 2021

使用keras实现CNN,直接上代码:

from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from keras import backend as K
 
class LossHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.losses = {'batch':[], 'epoch':[]}
        self.accuracy = {'batch':[], 'epoch':[]}
        self.val_loss = {'batch':[], 'epoch':[]}
        self.val_acc = {'batch':[], 'epoch':[]}
 
    def on_batch_end(self, batch, logs={}):
        self.losses['batch'].append(logs.get('loss'))
        self.accuracy['batch'].append(logs.get('acc'))
        self.val_loss['batch'].append(logs.get('val_loss'))
        self.val_acc['batch'].append(logs.get('val_acc'))
 
    def on_epoch_end(self, batch, logs={}):
        self.losses['epoch'].append(logs.get('loss'))
        self.accuracy['epoch'].append(logs.get('acc'))
        self.val_loss['epoch'].append(logs.get('val_loss'))
        self.val_acc['epoch'].append(logs.get('val_acc'))
 
    def loss_plot(self, loss_type):
        iters = range(len(self.losses[loss_type]))
        plt.figure()
        # acc
        plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
        # loss
        plt.plot(iters, self.losses[loss_type], 'g', label='train loss')
        if loss_type == 'epoch':
            # val_acc
            plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
            # val_loss
            plt.plot(iters, self.val_loss[loss_type], 'k', label='val loss')
        plt.grid(True)
        plt.xlabel(loss_type)
        plt.ylabel('acc-loss')
        plt.legend(loc="upper right")
        plt.show()
 
history = LossHistory()
 
batch_size = 128
nb_classes = 10
nb_epoch = 20
img_rows, img_cols = 28, 28
nb_filters = 32
pool_size = (2,2)
kernel_size = (3,3)
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
 
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
 
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
 
model3 = Sequential()
 
model3.add(Convolution2D(nb_filters, kernel_size[0] ,kernel_size[1],
                        border_mode='valid',
                        input_shape=input_shape))
model3.add(Activation('relu'))
 
model3.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model3.add(Activation('relu'))
 
model3.add(MaxPooling2D(pool_size=pool_size))
model3.add(Dropout(0.25))
 
model3.add(Flatten())
 
model3.add(Dense(128))
model3.add(Activation('relu'))
model3.add(Dropout(0.5))
 
model3.add(Dense(nb_classes))
model3.add(Activation('softmax'))
 
model3.summary()
 
model3.compile(loss='categorical_crossentropy',
              optimizer='adadelta',
              metrics=['accuracy'])
 
model3.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch,
          verbose=1, validation_data=(X_test, Y_test),callbacks=[history])
 
score = model3.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
 
#acc-loss
history.loss_plot('epoch')

补充:使用keras全连接网络训练mnist手写数字识别并输出可视化训练过程以及预测结果

前言

mnist 数字识别问题的可以直接使用全连接实现但是效果并不像CNN卷积神经网络好。Keras是目前最为广泛的深度学习工具之一,底层可以支持Tensorflow、MXNet、CNTK、Theano

准备工作

TensorFlow版本:1.13.1

Keras版本:2.1.6

Numpy版本:1.18.0

matplotlib版本:2.2.2

导入所需的库

from keras.layers import Dense,Flatten,Dropout
from keras.datasets import mnist
from keras import Sequential
import matplotlib.pyplot as plt
import numpy as np

Dense输入层作为全连接,Flatten用于全连接扁平化操作(也就是将二维打成一维),Dropout避免过拟合。使用datasets中的mnist的数据集,Sequential用于构建模型,plt为可视化,np用于处理数据。

划分数据集

# 训练集       训练集标签       测试集      测试集标签
(train_image,train_label),(test_image,test_label) = mnist.load_data()
print('shape:',train_image.shape)   #查看训练集的shape
plt.imshow(train_image[0])    #查看第一张图片
print('label:',train_label[0])      #查看第一张图片对应的标签
plt.show()

输出shape以及标签label结果:

Keras在mnist上的CNN实践,并且自定义loss函数曲线图操作

查看mnist数据集中第一张图片:

Keras在mnist上的CNN实践,并且自定义loss函数曲线图操作

数据归一化

train_image = train_image.astype('float32')
test_image = test_image.astype('float32')
train_image /= 255.0
test_image /= 255.0

将数据归一化,以便于训练的时候更快的收敛。

模型构建

#初始化模型(模型的优化 ---> 增大网络容量,直到过拟合)
model = Sequential()
model.add(Flatten(input_shape=(28,28)))    #将二维扁平化为一维(60000,28,28)---> (60000,28*28)输入28*28个神经元
model.add(Dropout(0.1))
model.add(Dense(1024,activation='relu'))   #全连接层 输出64个神经元 ,kernel_regularizer=l2(0.0003)
model.add(Dropout(0.1))
model.add(Dense(512,activation='relu'))    #全连接层
model.add(Dropout(0.1))
model.add(Dense(256,activation='relu'))    #全连接层
model.add(Dropout(0.1))
model.add(Dense(10,activation='softmax'))  #输出层,10个类别,用softmax分类

每层使用一次Dropout防止过拟合,激活函数使用relu,最后一层Dense神经元设置为10,使用softmax作为激活函数,因为只有0-9个数字。如果是二分类问题就使用sigmod函数来处理。

编译模型

#编译模型
model.compile(
    optimizer='adam',      #优化器使用默认adam
    loss='sparse_categorical_crossentropy', #损失函数使用sparse_categorical_crossentropy
    metrics=['acc']       #评价指标
)

sparse_categorical_crossentropy与categorical_crossentropy的区别:

sparse_categorical_crossentropy要求target为非One-hot编码,函数内部进行One-hot编码实现。

categorical_crossentropy要求target为One-hot编码。

One-hot格式如: [0,0,0,0,0,1,0,0,0,0] = 5

训练模型

#训练模型
history = model.fit(
    x=train_image,                          #训练的图片
    y=train_label,                          #训练的标签
    epochs=10,                              #迭代10次
    batch_size=512,                         #划分批次
    validation_data=(test_image,test_label) #验证集
)

迭代10次后的结果:

Keras在mnist上的CNN实践,并且自定义loss函数曲线图操作

绘制loss、acc图

#绘制loss acc图
plt.figure()
plt.plot(history.history['acc'],label='training acc')
plt.plot(history.history['val_acc'],label='val acc')
plt.title('model acc')
plt.ylabel('acc')
plt.xlabel('epoch')
plt.legend(loc='lower right')
plt.figure()
plt.plot(history.history['loss'],label='training loss')
plt.plot(history.history['val_loss'],label='val loss')
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(loc='upper right')
plt.show()

绘制出的loss变化图:

Keras在mnist上的CNN实践,并且自定义loss函数曲线图操作

绘制出的acc变化图:

Keras在mnist上的CNN实践,并且自定义loss函数曲线图操作

预测结果

print("前十个图片对应的标签: ",test_label[:10]) #前十个图片对应的标签
print("取前十张图片测试集预测:",np.argmax(model.predict(test_image[:10]),axis=1)) #取前十张图片测试集预测

打印的结果:

Keras在mnist上的CNN实践,并且自定义loss函数曲线图操作

可看到在第9个数字预测错了,标签为5的,预测成了6,为了避免这种问题可以适当的加深网络结构,或使用CNN模型。

保存模型

model.save('./mnist_model.h5')

完整代码

from keras.layers import Dense,Flatten,Dropout
from keras.datasets import mnist
from keras import Sequential
import matplotlib.pyplot as plt
import numpy as np
# 训练集       训练集标签       测试集      测试集标签
(train_image,train_label),(test_image,test_label) = mnist.load_data()
# print('shape:',train_image.shape)   #查看训练集的shape
# plt.imshow(train_image[0]) #查看第一张图片
# print('label:',train_label[0])      #查看第一张图片对应的标签
# plt.show()
#归一化(收敛)
train_image = train_image.astype('float32')
test_image = test_image.astype('float32')
train_image /= 255.0
test_image /= 255.0
#初始化模型(模型的优化 ---> 增大网络容量,直到过拟合)
model = Sequential()
model.add(Flatten(input_shape=(28,28)))   #将二维扁平化为一维(60000,28,28)---> (60000,28*28)输入28*28个神经元
model.add(Dropout(0.1))
model.add(Dense(1024,activation='relu'))    #全连接层 输出64个神经元 ,kernel_regularizer=l2(0.0003)
model.add(Dropout(0.1))
model.add(Dense(512,activation='relu'))    #全连接层
model.add(Dropout(0.1))
model.add(Dense(256,activation='relu'))    #全连接层
model.add(Dropout(0.1))
model.add(Dense(10,activation='softmax')) #输出层,10个类别,用softmax分类
#编译模型
model.compile(
    optimizer='adam',
    loss='sparse_categorical_crossentropy',
    metrics=['acc']
)
#训练模型
history = model.fit(
    x=train_image,                          #训练的图片
    y=train_label,                          #训练的标签
    epochs=10,                              #迭代10次
    batch_size=512,                         #划分批次
    validation_data=(test_image,test_label) #验证集
)
#绘制loss acc 图
plt.figure()
plt.plot(history.history['acc'],label='training acc')
plt.plot(history.history['val_acc'],label='val acc')
plt.title('model acc')
plt.ylabel('acc')
plt.xlabel('epoch')
plt.legend(loc='lower right')
plt.figure()
plt.plot(history.history['loss'],label='training loss')
plt.plot(history.history['val_loss'],label='val loss')
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(loc='upper right')
plt.show()
print("前十个图片对应的标签: ",test_label[:10]) #前十个图片对应的标签
print("取前十张图片测试集预测:",np.argmax(model.predict(test_image[:10]),axis=1)) #取前十张图片测试集预测
#优化前(一个全连接层(隐藏层))
#- 1s 12us/step - loss: 1.8765 - acc: 0.8825
# [7 2 1 0 4 1 4 3 5 4]
# [7 2 1 0 4 1 4 9 5 9]
#优化后(三个全连接层(隐藏层))
#- 1s 14us/step - loss: 0.0320 - acc: 0.9926 - val_loss: 0.2530 - val_acc: 0.9655
# [7 2 1 0 4 1 4 9 5 9]
# [7 2 1 0 4 1 4 9 5 9]
model.save('./model_nameALL.h5')

总结

使用全连接层训练得到的最后结果train_loss: 0.0242 - train_acc: 0.9918 - val_loss: 0.0560 - val_acc: 0.9826,由loss acc可视化图可以看出训练有着明显的效果。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用urllib2实现发送带cookie的请求
Apr 28 Python
python实现按任意键继续执行程序
Dec 30 Python
python用BeautifulSoup库简单爬虫实例分析
Jul 30 Python
python批量获取html内body内容的实例
Jan 02 Python
利用python提取wav文件的mfcc方法
Jan 09 Python
Python对象转换为json的方法步骤
Apr 25 Python
python os.fork() 循环输出方法
Aug 08 Python
Django实现文件上传和下载功能
Oct 06 Python
pytorch 计算ConvTranspose1d输出特征大小方式
Jun 23 Python
python 写一个性能测试工具(一)
Oct 24 Python
Python urlopen()参数代码示例解析
Dec 10 Python
如何使用Python实现一个简易的ORM模型
May 12 Python
python编写五子棋游戏
浅谈python数据类型及其操作
对Keras自带Loss Function的深入研究
May 25 #Python
pytorch中的model=model.to(device)使用说明
May 24 #Python
解决pytorch-gpu 安装失败的记录
May 24 #Python
如何解决.cuda()加载用时很长的问题
一劳永逸彻底解决pip install慢的办法
May 24 #Python
You might like
用PHP调用Oracle存储过程
2006/10/09 PHP
PHP 操作文件的一些FAQ总结
2009/02/12 PHP
php实现图片添加水印功能
2014/02/13 PHP
PHP单态模式简单用法示例
2016/11/16 PHP
PHP+Mysql分布式事务与解决方案深入理解
2021/02/27 PHP
DHTML 中的绝对定位
2006/11/26 Javascript
说说JSON和JSONP 也许你会豁然开朗
2012/09/02 Javascript
jquery scroll()区分横向纵向滚动条的方法
2014/04/04 Javascript
jQuery使用$.get()方法从服务器文件载入数据实例
2015/03/25 Javascript
JS鼠标拖拽实例分析
2015/11/23 Javascript
一种新的javascript对象创建方式Object.create()
2015/12/28 Javascript
基于javascript实现样式清新图片轮播特效
2016/03/30 Javascript
jQuery异步提交表单的两种方式
2016/09/13 Javascript
jQuery特殊符号转义的实现
2016/11/30 Javascript
Angularjs中的ui-bootstrap的使用教程
2017/02/19 Javascript
微信小程序数据存储与取值详解
2018/01/30 Javascript
微信小程序实现自定义加载图标功能
2018/07/19 Javascript
vue中利用Promise封装jsonp并调取数据
2019/06/18 Javascript
微信小程序—setTimeOut定时器的问题及解决
2019/07/26 Javascript
Layui 解决表格异步调用后台分页的问题
2019/10/26 Javascript
uni-app实现点赞评论功能
2019/11/25 Javascript
vue iview实现动态新增和删除
2020/06/17 Javascript
Python备份Mysql脚本
2008/08/11 Python
Python中的异常处理简明介绍
2015/04/13 Python
Django 多表关联 存储 使用方法详解 ManyToManyField save
2019/08/09 Python
TripAdvisor印尼站:全球领先的旅游网站
2018/03/15 全球购物
Vertbaudet西班牙网上商店:婴儿服装、童装、母婴用品和儿童家具
2019/10/16 全球购物
德国便宜的宠物店:Brekz.de
2020/10/23 全球购物
竞聘副主任科员演讲稿
2014/01/11 职场文书
实习生岗位职责
2014/04/12 职场文书
酒店管理毕业生自荐信
2014/05/25 职场文书
体育教师个人总结
2015/02/09 职场文书
2015年财政局工作总结
2015/05/21 职场文书
离婚被告代理词
2015/05/23 职场文书
血轮眼轮回眼特效 html+css
2021/03/31 HTML / CSS
win11自动弹出虚拟键盘怎么关闭? Win11关闭虚拟键盘的技巧
2023/01/09 数码科技