使用TensorFlow实现二分类的方法示例


Posted in Python onFebruary 05, 2019

使用TensorFlow构建一个神经网络来实现二分类,主要包括输入数据格式、隐藏层数的定义、损失函数的选择、优化函数的选择、输出层。下面通过numpy来随机生成一组数据,通过定义一种正负样本的区别,通过TensorFlow来构造一个神经网络来实现二分类。

一、神经网络结构

输入数据:定义输入一个二维数组(x1,x2),数据通过numpy来随机产生,将输出定义为0或1,如果x1+x2<1,则y为1,否则y为0。

隐藏层:定义两层隐藏层,隐藏层的参数为(2,3),两行三列的矩阵,输入数据通过隐藏层之后,输出的数据为(1,3),t通过矩阵之间的乘法运算可以获得输出数据。

损失函数:使用交叉熵作为神经网络的损失函数,常用的损失函数还有平方差。

优化函数:通过优化函数来使得损失函数最小化,这里采用的是Adadelta算法进行优化,常用的还有梯度下降算法。

输出数据:将隐藏层的输出数据通过(3,1)的参数,输出一个一维向量,值的大小为0或1。

使用TensorFlow实现二分类的方法示例

二、TensorFlow代码的实现

import tensorflow as tf
from numpy.random import RandomState
 
if __name__ == "__main__":
  #定义每次训练数据batch的大小为8,防止内存溢出
  batch_size = 8
  #定义神经网络的参数
  w1 = tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))
  w2 = tf.Variable(tf.random_normal([3,1],stddev=1,seed=1))
  #定义输入和输出
  x = tf.placeholder(tf.float32,shape=(None,2),name="x-input")
  y_ = tf.placeholder(tf.float32,shape=(None,1),name="y-input")
  #定义神经网络的前向传播过程
  a = tf.matmul(x,w1)
  y = tf.matmul(a,w2)
  #定义损失函数和反向传播算法
  #使用交叉熵作为损失函数
  #tf.clip_by_value(t, clip_value_min, clip_value_max,name=None)
  #基于min和max对张量t进行截断操作,为了应对梯度爆发或者梯度消失的情况
  cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y,1e-10,1.0)))
  # 使用Adadelta算法作为优化函数,来保证预测值与实际值之间交叉熵最小
  train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
  #通过随机函数生成一个模拟数据集
  rdm = RandomState(1)
  # 定义数据集的大小
  dataset_size = 128
  # 模拟输入是一个二维数组
  X = rdm.rand(dataset_size,2)
  #定义输出值,将x1+x2 < 1的输入数据定义为正样本
  Y = [[int(x1+x2 < 1)] for (x1,x2) in X]
  #创建会话运行TensorFlow程序
  with tf.Session() as sess:
    #初始化变量 tf.initialize_all_variables()
    init = tf.initialize_all_variables()
    sess.run(init)
    #设置神经网络的迭代次数
    steps = 5000
    for i in range(steps):
      #每次选取batch_size个样本进行训练
      start = (i * batch_size) % dataset_size
      end = min(start + batch_size,dataset_size)
      #通过选取样本训练神经网络并更新参数
      sess.run(train_step,feed_dict={x:X[start:end],y_:Y[start:end]})
      #每迭代1000次输出一次日志信息
      if i % 1000 == 0 :
        # 计算所有数据的交叉熵
        total_cross_entropy = sess.run(cross_entropy,feed_dict={x:X,y_:Y})
        # 输出交叉熵之和
        print("After %d training step(s),cross entropy on all data is %g"%(i,total_cross_entropy))
    #输出参数w1
    print(w1.eval(session=sess))
    #输出参数w2
    print(w2.eval(session=sess))
    '''
    After 0 training step(s),cross entropy on all data is 0.0674925
    After 1000 training step(s),cross entropy on all data is 0.0163385
    After 2000 training step(s),cross entropy on all data is 0.00907547
    After 3000 training step(s),cross entropy on all data is 0.00714436
    After 4000 training step(s),cross entropy on all data is 0.00578471
    [[-1.96182752 2.58235407 1.68203771]
     [-3.46817183 1.06982315 2.11788988]]
    [[-1.82471502]
     [ 2.68546653]
     [ 1.41819501]]
    '''

上面的TensorFlow二分类我是参考Google深度学习框架,al_kk评论说这个损失函数的定义存在问题,之前没有仔细的去考虑这个问题,al_kk提醒之后,我发现这个损失函数的定义的确存在问题,经过测试发现这个模型也存在一些问题。其实,我们的主要目的是想去学习一个x1+x2=1的直线,来区分0和1两类不同的类别,下面我对这个模型进行了一些修改并说明一下为什么这个损失函数的定义存在问题。

一、为什么说这个损失函数的定义存在问题呢?

上面程序中定义的输入的y的shape为[1],也就是y的类别为0或1,对于单分类问题交叉熵损失函数的定义应该为

使用TensorFlow实现二分类的方法示例

其中n为y的种类,在上面的例子中需要包含0和1的y_*log(y)(y_表示真实类别,y表示预测类别),而上面的例子中只包含了一个y_*log(y),在上例中正确的损失函数定义应该为loss = y_*log(y) + (1-y_) * log(1-y)。为了便于大家理解,我引用al_kk:“如果只有一个类别的交叉熵即y_ * log(y),如果真实类别y_为0,那么无论预测值y为任何值的时候,损失函数始终为0”。除此之外,大家可以想一下,当预测值始终为1的时候,那么损失函数是不是就会一直为0,这也是为什么输出预测值y的时候,y的值都是大于1的。如果将y的shape改为[2]的话,就可以使用y_*log(y)。

二、修改之后的二分类程序

import tensorflow as tf
import numpy as np
from numpy.random import RandomState
import matplotlib.pyplot as plt
 
if __name__ == "__main__":
  #定义神经网络的参数
  w = tf.Variable(tf.random_normal([2,1],stddev=1,seed=1))
  b = tf.Variable(tf.random_normal([1],stddev=1,seed=1))
  #定义输入和输出
  x = tf.placeholder(tf.float32,shape=(None,2),name="x-input")
  y_ = tf.placeholder(tf.float32,shape=(None,1),name="y-input")
  #定义神经网络的前向传播过程
  y = tf.nn.sigmoid(tf.matmul(x,w) + b)
  #基于min和max对张量t进行截断操作,为了应对梯度爆发或者梯度消失的情况
  cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y,1e-10,1.0))+(1-y_) * tf.log(tf.clip_by_value(1-y,1e-10,1.0)))
  # 使用Adadelta算法作为优化函数,来保证预测值与实际值之间交叉熵最小
  train_step = tf.train.AdamOptimizer(0.01).minimize(cross_entropy)
  #通过随机函数生成一个模拟数据集
  rdm = RandomState(1)
  # 定义数据集的大小
  dataset_size = 100
  # 模拟输入是一个二维数组
  X = rdm.rand(dataset_size,2)
  #定义输出值,将x1+x2 < 1的输入数据定义为正样本
  Y = [[int(x1+x2 < 1)] for (x1,x2) in X]
  #创建会话运行TensorFlow程序
  with tf.Session() as sess:
    #初始化变量 tf.initialize_all_variables()
    init = tf.initialize_all_variables()
    sess.run(init)
    #设置神经网络的迭代次数
    steps = 500
    for i in range(steps):
      #通过选取样本训练神经网络并更新参数
      for (input_x,input_y) in zip(X,Y):
        input_x = np.reshape(input_x,(1,2))
        input_y = np.reshape(input_y,(1,1))
        sess.run(train_step,feed_dict={x:input_x,y_:input_y})
      #每迭代1000次输出一次日志信息
      if i % 100 == 0:
        # 计算所有数据的交叉熵
        total_cross_entropy = sess.run(cross_entropy,feed_dict={x:X,y_:Y})
        # 输出交叉熵之和
        print("After %d training step(s),cross entropy on all data is %g"%(i,total_cross_entropy))
    #预测输入X的类别
    pred_Y = sess.run(y,feed_dict={x:X})
    index = 1
    for pred,real in zip(pred_Y,Y):
      print(pred,real)

使用TensorFlow实现二分类的方法示例

使用TensorFlow实现二分类的方法示例

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中关键字is与==的区别简述
Jul 31 Python
Python守护进程(daemon)代码实例
Mar 06 Python
详解Python中的join()函数的用法
Apr 07 Python
Python错误: SyntaxError: Non-ASCII character解决办法
Jun 08 Python
Python cookbook(数据结构与算法)同时对数据做转换和换算处理操作示例
Mar 23 Python
python3+PyQt5图形项的自定义和交互 python3实现page Designer应用程序
Jul 20 Python
Tensorflow卷积神经网络实例
May 24 Python
浅谈pycharm的xmx和xms设置方法
Dec 03 Python
python时间序列按频率生成日期的方法
May 14 Python
Django的性能优化实现解析
Jul 30 Python
python3:excel操作之读取数据并返回字典 + 写入的案例
Sep 01 Python
Python编写车票订购系统 Python实现快递收费系统
Aug 14 Python
Tensorflow分类器项目自定义数据读入的实现
Feb 05 #Python
在Python 字典中一键对应多个值的实例
Feb 03 #Python
Django csrf 两种方法设置form的实例
Feb 03 #Python
解决django前后端分离csrf验证的问题
Feb 03 #Python
Python利用heapq实现一个优先级队列的方法
Feb 03 #Python
对Python3中dict.keys()转换成list类型的方法详解
Feb 03 #Python
对python中字典keys,values,items的使用详解
Feb 03 #Python
You might like
PHP的substr_replace将指定两位置之间的字符替换为*号
2011/05/04 PHP
解析php file_exists无效的解决办法
2013/06/26 PHP
一个图片地址分解程序(用于PHP小偷程序)
2014/08/23 PHP
php查看当前Session的ID实例
2015/03/16 PHP
简单了解PHP编程中数组的指针的使用
2015/11/30 PHP
PHP下载远程图片的几种方法总结
2017/04/07 PHP
PHP yield关键字功能与用法分析
2019/01/03 PHP
Javascript 验证上传图片大小[客户端]
2009/08/01 Javascript
extjs 的权限问题 要求控制的对象是 菜单,按钮,URL
2010/03/09 Javascript
来自国外的页面JavaScript文件优化
2010/12/08 Javascript
自己实现string的substring方法 人民币小写转大写,数字反转,正则优化
2012/09/02 Javascript
js+html5获取用户地理位置信息并在Google地图上显示的方法
2015/06/05 Javascript
JS实现简单的tab切换选项卡效果
2016/09/21 Javascript
jQuery滚动插件scrollable.js用法分析
2017/05/25 jQuery
vux uploader 图片上传组件的安装使用方法
2018/05/15 Javascript
Vue-cli3项目配置Vue.config.js实战记录
2018/07/29 Javascript
vue 纯js监听滚动条到底部的实例讲解
2018/09/03 Javascript
vue全局自定义指令-元素拖拽的实现代码
2019/04/14 Javascript
vue项目打包后上传至GitHub并实现github-pages的预览
2019/05/06 Javascript
layui select 禁止点击的实现方法
2019/09/05 Javascript
微信小程序wx.getUserInfo授权获取用户信息(头像、昵称)的实现
2020/08/19 Javascript
node.js基础知识汇总
2020/08/25 Javascript
Javascript类型判断相关例题及解析
2020/08/26 Javascript
Nodejs 数组的队列以及forEach的应用详解
2021/02/25 NodeJs
Python获取文件ssdeep值的方法
2014/10/05 Python
快速入手Python字符编码
2016/08/03 Python
回调函数的意义以及python实现实例
2017/06/20 Python
wx.CheckBox创建复选框控件并响应鼠标点击事件
2018/04/25 Python
python中将正则过滤的内容输出写入到文件中的实例
2018/10/21 Python
django框架实现一次性上传多个文件功能示例【批量上传】
2019/06/19 Python
python统计字符的个数代码实例
2020/02/07 Python
css3的transform中scale缩放详解
2014/12/08 HTML / CSS
课程改革实施方案
2014/03/16 职场文书
子女赡养老人协议书
2016/03/23 职场文书
Java基于Dijkstra算法实现校园导游程序
2022/03/17 Java/Android
MySQL索引失效场景及解决方案
2022/07/23 MySQL