使用TensorFlow实现二分类的方法示例


Posted in Python onFebruary 05, 2019

使用TensorFlow构建一个神经网络来实现二分类,主要包括输入数据格式、隐藏层数的定义、损失函数的选择、优化函数的选择、输出层。下面通过numpy来随机生成一组数据,通过定义一种正负样本的区别,通过TensorFlow来构造一个神经网络来实现二分类。

一、神经网络结构

输入数据:定义输入一个二维数组(x1,x2),数据通过numpy来随机产生,将输出定义为0或1,如果x1+x2<1,则y为1,否则y为0。

隐藏层:定义两层隐藏层,隐藏层的参数为(2,3),两行三列的矩阵,输入数据通过隐藏层之后,输出的数据为(1,3),t通过矩阵之间的乘法运算可以获得输出数据。

损失函数:使用交叉熵作为神经网络的损失函数,常用的损失函数还有平方差。

优化函数:通过优化函数来使得损失函数最小化,这里采用的是Adadelta算法进行优化,常用的还有梯度下降算法。

输出数据:将隐藏层的输出数据通过(3,1)的参数,输出一个一维向量,值的大小为0或1。

使用TensorFlow实现二分类的方法示例

二、TensorFlow代码的实现

import tensorflow as tf
from numpy.random import RandomState
 
if __name__ == "__main__":
  #定义每次训练数据batch的大小为8,防止内存溢出
  batch_size = 8
  #定义神经网络的参数
  w1 = tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))
  w2 = tf.Variable(tf.random_normal([3,1],stddev=1,seed=1))
  #定义输入和输出
  x = tf.placeholder(tf.float32,shape=(None,2),name="x-input")
  y_ = tf.placeholder(tf.float32,shape=(None,1),name="y-input")
  #定义神经网络的前向传播过程
  a = tf.matmul(x,w1)
  y = tf.matmul(a,w2)
  #定义损失函数和反向传播算法
  #使用交叉熵作为损失函数
  #tf.clip_by_value(t, clip_value_min, clip_value_max,name=None)
  #基于min和max对张量t进行截断操作,为了应对梯度爆发或者梯度消失的情况
  cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y,1e-10,1.0)))
  # 使用Adadelta算法作为优化函数,来保证预测值与实际值之间交叉熵最小
  train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
  #通过随机函数生成一个模拟数据集
  rdm = RandomState(1)
  # 定义数据集的大小
  dataset_size = 128
  # 模拟输入是一个二维数组
  X = rdm.rand(dataset_size,2)
  #定义输出值,将x1+x2 < 1的输入数据定义为正样本
  Y = [[int(x1+x2 < 1)] for (x1,x2) in X]
  #创建会话运行TensorFlow程序
  with tf.Session() as sess:
    #初始化变量 tf.initialize_all_variables()
    init = tf.initialize_all_variables()
    sess.run(init)
    #设置神经网络的迭代次数
    steps = 5000
    for i in range(steps):
      #每次选取batch_size个样本进行训练
      start = (i * batch_size) % dataset_size
      end = min(start + batch_size,dataset_size)
      #通过选取样本训练神经网络并更新参数
      sess.run(train_step,feed_dict={x:X[start:end],y_:Y[start:end]})
      #每迭代1000次输出一次日志信息
      if i % 1000 == 0 :
        # 计算所有数据的交叉熵
        total_cross_entropy = sess.run(cross_entropy,feed_dict={x:X,y_:Y})
        # 输出交叉熵之和
        print("After %d training step(s),cross entropy on all data is %g"%(i,total_cross_entropy))
    #输出参数w1
    print(w1.eval(session=sess))
    #输出参数w2
    print(w2.eval(session=sess))
    '''
    After 0 training step(s),cross entropy on all data is 0.0674925
    After 1000 training step(s),cross entropy on all data is 0.0163385
    After 2000 training step(s),cross entropy on all data is 0.00907547
    After 3000 training step(s),cross entropy on all data is 0.00714436
    After 4000 training step(s),cross entropy on all data is 0.00578471
    [[-1.96182752 2.58235407 1.68203771]
     [-3.46817183 1.06982315 2.11788988]]
    [[-1.82471502]
     [ 2.68546653]
     [ 1.41819501]]
    '''

上面的TensorFlow二分类我是参考Google深度学习框架,al_kk评论说这个损失函数的定义存在问题,之前没有仔细的去考虑这个问题,al_kk提醒之后,我发现这个损失函数的定义的确存在问题,经过测试发现这个模型也存在一些问题。其实,我们的主要目的是想去学习一个x1+x2=1的直线,来区分0和1两类不同的类别,下面我对这个模型进行了一些修改并说明一下为什么这个损失函数的定义存在问题。

一、为什么说这个损失函数的定义存在问题呢?

上面程序中定义的输入的y的shape为[1],也就是y的类别为0或1,对于单分类问题交叉熵损失函数的定义应该为

使用TensorFlow实现二分类的方法示例

其中n为y的种类,在上面的例子中需要包含0和1的y_*log(y)(y_表示真实类别,y表示预测类别),而上面的例子中只包含了一个y_*log(y),在上例中正确的损失函数定义应该为loss = y_*log(y) + (1-y_) * log(1-y)。为了便于大家理解,我引用al_kk:“如果只有一个类别的交叉熵即y_ * log(y),如果真实类别y_为0,那么无论预测值y为任何值的时候,损失函数始终为0”。除此之外,大家可以想一下,当预测值始终为1的时候,那么损失函数是不是就会一直为0,这也是为什么输出预测值y的时候,y的值都是大于1的。如果将y的shape改为[2]的话,就可以使用y_*log(y)。

二、修改之后的二分类程序

import tensorflow as tf
import numpy as np
from numpy.random import RandomState
import matplotlib.pyplot as plt
 
if __name__ == "__main__":
  #定义神经网络的参数
  w = tf.Variable(tf.random_normal([2,1],stddev=1,seed=1))
  b = tf.Variable(tf.random_normal([1],stddev=1,seed=1))
  #定义输入和输出
  x = tf.placeholder(tf.float32,shape=(None,2),name="x-input")
  y_ = tf.placeholder(tf.float32,shape=(None,1),name="y-input")
  #定义神经网络的前向传播过程
  y = tf.nn.sigmoid(tf.matmul(x,w) + b)
  #基于min和max对张量t进行截断操作,为了应对梯度爆发或者梯度消失的情况
  cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y,1e-10,1.0))+(1-y_) * tf.log(tf.clip_by_value(1-y,1e-10,1.0)))
  # 使用Adadelta算法作为优化函数,来保证预测值与实际值之间交叉熵最小
  train_step = tf.train.AdamOptimizer(0.01).minimize(cross_entropy)
  #通过随机函数生成一个模拟数据集
  rdm = RandomState(1)
  # 定义数据集的大小
  dataset_size = 100
  # 模拟输入是一个二维数组
  X = rdm.rand(dataset_size,2)
  #定义输出值,将x1+x2 < 1的输入数据定义为正样本
  Y = [[int(x1+x2 < 1)] for (x1,x2) in X]
  #创建会话运行TensorFlow程序
  with tf.Session() as sess:
    #初始化变量 tf.initialize_all_variables()
    init = tf.initialize_all_variables()
    sess.run(init)
    #设置神经网络的迭代次数
    steps = 500
    for i in range(steps):
      #通过选取样本训练神经网络并更新参数
      for (input_x,input_y) in zip(X,Y):
        input_x = np.reshape(input_x,(1,2))
        input_y = np.reshape(input_y,(1,1))
        sess.run(train_step,feed_dict={x:input_x,y_:input_y})
      #每迭代1000次输出一次日志信息
      if i % 100 == 0:
        # 计算所有数据的交叉熵
        total_cross_entropy = sess.run(cross_entropy,feed_dict={x:X,y_:Y})
        # 输出交叉熵之和
        print("After %d training step(s),cross entropy on all data is %g"%(i,total_cross_entropy))
    #预测输入X的类别
    pred_Y = sess.run(y,feed_dict={x:X})
    index = 1
    for pred,real in zip(pred_Y,Y):
      print(pred,real)

使用TensorFlow实现二分类的方法示例

使用TensorFlow实现二分类的方法示例

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python 条件判断的缩写方法
Sep 06 Python
Python 字符串操作实现代码(截取/替换/查找/分割)
Jun 08 Python
详解MySQL数据类型int(M)中M的含义
Nov 20 Python
python查询mysql,返回json的实例
Mar 26 Python
使用python3+xlrd解析Excel的实例
May 04 Python
Python使用sort和class实现的多级排序功能示例
Aug 15 Python
Python全局变量与局部变量区别及用法分析
Sep 03 Python
python使用scrapy发送post请求的坑
Sep 04 Python
Python面向对象程序设计构造函数和析构函数用法分析
Apr 12 Python
python 批量添加的button 使用同一点击事件的方法
Jul 17 Python
python3获取url文件大小示例代码
Sep 18 Python
tensorflow获取预训练模型某层参数并赋值到当前网络指定层方式
Jan 24 Python
Tensorflow分类器项目自定义数据读入的实现
Feb 05 #Python
在Python 字典中一键对应多个值的实例
Feb 03 #Python
Django csrf 两种方法设置form的实例
Feb 03 #Python
解决django前后端分离csrf验证的问题
Feb 03 #Python
Python利用heapq实现一个优先级队列的方法
Feb 03 #Python
对Python3中dict.keys()转换成list类型的方法详解
Feb 03 #Python
对python中字典keys,values,items的使用详解
Feb 03 #Python
You might like
PHP脚本的10个技巧(5)
2006/10/09 PHP
php读取mysql乱码,用set names XXX解决的原理分享
2011/12/29 PHP
php判断变量类型常用方法
2012/04/24 PHP
php中$美元符号与Zen Coding冲突问题解决方法分享
2014/05/28 PHP
PHP连接MSSQL时nvarchar字段长度被截断为255的解决方法
2014/12/25 PHP
laravel框架中间件 except 和 only 的用法示例
2019/07/12 PHP
jquery复选框CHECKBOX全选、反选
2008/08/30 Javascript
关于textarea提交的内容无法换行的解决办法
2013/04/09 Javascript
JavaScript中几个重要的属性(this、constructor、prototype)介绍
2013/05/19 Javascript
js简单的点击返回顶部效果实现方法
2015/04/10 Javascript
AngularJS 与百度地图的结合实例
2016/10/20 Javascript
js print打印网页指定区域内容的简单实例
2016/11/01 Javascript
JavaScript中英文字符长度统计方法示例【按照中文占2个字符】
2017/01/17 Javascript
VUE + UEditor 单图片跨域上传功能的实现方法
2018/02/08 Javascript
Vue下滚动到页面底部无限加载数据的示例代码
2018/04/22 Javascript
nodejs读取并去重excel文件
2018/04/22 NodeJs
JSON生成Form表单的方法示例
2018/11/21 Javascript
原生js实现公告滚动效果
2021/01/10 Javascript
微信小程序文章详情功能完整实例
2020/06/03 Javascript
[01:47]2018年度DOTA2最佳教练-完美盛典
2018/12/16 DOTA
解决DataFrame排序sort的问题
2018/06/07 Python
python远程调用rpc模块xmlrpclib的方法
2019/01/11 Python
解决Python中pandas读取*.csv文件出现编码问题
2019/07/12 Python
pytorch模型预测结果与ndarray互转方式
2020/01/15 Python
python def 定义函数,调用函数方式
2020/06/02 Python
Python实现删除某列中含有空值的行的示例代码
2020/07/20 Python
python音频处理的示例详解
2020/12/23 Python
Html5游戏开发之乒乓Ping Pong游戏示例(二)
2013/01/21 HTML / CSS
美国折扣香水网站:The Perfume Spot
2020/12/12 全球购物
中学生英语演讲稿
2014/04/26 职场文书
道路施工安全责任书
2014/07/24 职场文书
责任书范本
2014/08/25 职场文书
个园导游词
2015/02/04 职场文书
开发一个封装iframe的vue组件
2021/03/29 Vue.js
Python批量将csv文件转化成xml文件的实例
2021/05/10 Python
Kubernetes中Deployment的升级与回滚
2022/04/01 Servers