Python实现常见的几种加密算法(MD5,SHA-1,HMAC,DES/AES,RSA和ECC)


Posted in Python onMay 09, 2020

生活中我们经常会遇到一些加密算法,今天我们就聊聊这些加密算法的Python实现。部分常用的加密方法基本都有对应的Python库,基本不再需要我们用代码实现具体算法。

MD5加密

全称:MD5消息摘要算法(英语:MD5 Message-Digest Algorithm),一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致。md5加密算法是不可逆的,所以解密一般都是通过暴力穷举方法,通过网站的接口实现解密。Python代码:

import hashlib 
m = hashlib.md5() 
m.update(str.encode("utf8")) 
print(m.hexdigest())

SHA1加密

全称:安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA),SHA1比MD5的安全性更强。对于长度小于2^ 64位的消息,SHA1会产生一个160位的消息摘要。Python代码:

import hashlib 
sha1 = hashlib.sha1() 
data = '2333333' 
sha1.update(data.encode('utf-8')) 
sha1_data = sha1.hexdigest() 
print(sha1_data)

HMAC加密

全称:散列消息鉴别码(Hash Message Authentication Code), HMAC加密算法是一种安全的基于加密hash函数和共享密钥的消息认证协议。实现原理是用公开函数和密钥产生一个固定长度的值作为认证标识,用这个标识鉴别消息的完整性。使用一个密钥生成一个固定大小的小数据块,即 MAC,并将其加入到消息中,然后传输。接收方利用与发送方共享的密钥进行鉴别认证等。Python代码:

import hmac 
import hashlib 
# 第一个参数是密钥key,第二个参数是待加密的字符串,第三个参数是hash函数 
mac = hmac.new('key','hello',hashlib.md5) 
mac.digest() # 字符串的ascii格式 
mac.hexdigest() # 加密后字符串的十六进制格式

DES加密

全称:数据加密标准(Data Encryption Standard),属于对称加密算法。DES是一个分组加密算法,典型的DES以64位为分组对数据加密,加密和解密用的是同一个算法。它的密钥长度是56位(因为每个第8 位都用作奇偶校验),密钥可以是任意的56位的数,而且可以任意时候改变。Python代码:

import binascii 
from pyDes import des, CBC, PAD_PKCS5 
# 需要安装 pip install pyDes 
 
def des_encrypt(secret_key, s): 
 iv = secret_key 
 k = des(secret_key, CBC, iv, pad=None, padmode=PAD_PKCS5) 
 en = k.encrypt(s, padmode=PAD_PKCS5) 
 return binascii.b2a_hex(en) 
 
def des_decrypt(secret_key, s): 
 iv = secret_key 
 k = des(secret_key, CBC, iv, pad=None, padmode=PAD_PKCS5) 
 de = k.decrypt(binascii.a2b_hex(s), padmode=PAD_PKCS5) 
 return de 
 
secret_str = des_encrypt('12345678', 'I love YOU~') 
print(secret_str) 
clear_str = des_decrypt('12345678', secret_str) 
print(clear_str)

AES加密

全称:高级加密标准(英语:Advanced Encryption Standard),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。Python代码:

import base64 
from Crypto.Cipher import AES 
 
''' 
AES对称加密算法 
''' 
# 需要补位,str不是16的倍数那就补足为16的倍数 
def add_to_16(value): 
 while len(value) % 16 != 0: 
  value += '\0' 
 return str.encode(value) # 返回bytes 
# 加密方法 
def encrypt(key, text): 
 aes = AES.new(add_to_16(key), AES.MODE_ECB) # 初始化加密器 
 encrypt_aes = aes.encrypt(add_to_16(text)) # 先进行aes加密 
 encrypted_text = str(base64.encodebytes(encrypt_aes), encoding='utf-8') # 执行加密并转码返回bytes 
 return encrypted_text 
# 解密方法 
def decrypt(key, text): 
 aes = AES.new(add_to_16(key), AES.MODE_ECB) # 初始化加密器 
 base64_decrypted = base64.decodebytes(text.encode(encoding='utf-8')) # 优先逆向解密base64成bytes 
 decrypted_text = str(aes.decrypt(base64_decrypted), encoding='utf-8').replace('\0', '') # 执行解密密并转码返回str 
 return decrypted_text

RSA加密

全称:Rivest-Shamir-Adleman,RSA加密算法是一种非对称加密算法。在公开密钥加密和电子商业中RSA被广泛使用。它被普遍认为是目前比较优秀的公钥方案之一。RSA是第一个能同时用于加密和数字签名的算法,它能够抵抗到目前为止已知的所有密码攻击。Python代码:

# -*- coding: UTF-8 -*- 
# reference codes: https://www.jianshu.com/p/7a4645691c68 
 
import base64 
import rsa 
from rsa import common 
 
# 使用 rsa库进行RSA签名和加解密 
class RsaUtil(object): 
 PUBLIC_KEY_PATH = 'xxxxpublic_key.pem' # 公钥 
 PRIVATE_KEY_PATH = 'xxxxxprivate_key.pem' # 私钥 
 
 # 初始化key 
 def __init__(self, 
     company_pub_file=PUBLIC_KEY_PATH, 
     company_pri_file=PRIVATE_KEY_PATH): 
 
  if company_pub_file: 
   self.company_public_key = rsa.PublicKey.load_pkcs1_openssl_pem(open(company_pub_file).read()) 
  if company_pri_file: 
   self.company_private_key = rsa.PrivateKey.load_pkcs1(open(company_pri_file).read()) 
 
 def get_max_length(self, rsa_key, encrypt=True): 
  """加密内容过长时 需要分段加密 换算每一段的长度. 
   :param rsa_key: 钥匙. 
   :param encrypt: 是否是加密. 
  """ 
  blocksize = common.byte_size(rsa_key.n) 
  reserve_size = 11 # 预留位为11 
  if not encrypt: # 解密时不需要考虑预留位 
   reserve_size = 0 
  maxlength = blocksize - reserve_size 
  return maxlength 
 
 # 加密 支付方公钥 
 def encrypt_by_public_key(self, message): 
  """使用公钥加密. 
   :param message: 需要加密的内容. 
   加密之后需要对接过进行base64转码 
  """ 
  encrypt_result = b'' 
  max_length = self.get_max_length(self.company_public_key) 
  while message: 
   input = message[:max_length] 
   message = message[max_length:] 
   out = rsa.encrypt(input, self.company_public_key) 
   encrypt_result += out 
  encrypt_result = base64.b64encode(encrypt_result) 
  return encrypt_result 
 
 def decrypt_by_private_key(self, message): 
  """使用私钥解密. 
   :param message: 需要加密的内容. 
   解密之后的内容直接是字符串,不需要在进行转义 
  """ 
  decrypt_result = b"" 
 
  max_length = self.get_max_length(self.company_private_key, False) 
  decrypt_message = base64.b64decode(message) 
  while decrypt_message: 
   input = decrypt_message[:max_length] 
   decrypt_message = decrypt_message[max_length:] 
   out = rsa.decrypt(input, self.company_private_key) 
   decrypt_result += out 
  return decrypt_result 
 
 # 签名 商户私钥 base64转码 
 def sign_by_private_key(self, data): 
  """私钥签名. 
   :param data: 需要签名的内容. 
   使用SHA-1 方法进行签名(也可以使用MD5) 
   签名之后,需要转义后输出 
  """ 
  signature = rsa.sign(str(data), priv_key=self.company_private_key, hash='SHA-1') 
  return base64.b64encode(signature) 
 
 def verify_by_public_key(self, message, signature): 
  """公钥验签. 
   :param message: 验签的内容. 
   :param signature: 对验签内容签名的值(签名之后,会进行b64encode转码,所以验签前也需转码). 
  """ 
  signature = base64.b64decode(signature) 
  return rsa.verify(message, signature, self.company_public_key)

ECC加密

全称:椭圆曲线加密(Elliptic Curve Cryptography),ECC加密算法是一种公钥加密技术,以椭圆曲线理论为基础。利用有限域上椭圆曲线的点构成的Abel群离散对数难解性,实现加密、解密和数字签名。将椭圆曲线中的加法运算与离散对数中的模乘运算相对应,就可以建立基于椭圆曲线的对应密码体制。Python代码:

# -*- coding:utf-8 *- 
# author: DYBOY 
# reference codes: https://blog.dyboy.cn/websecurity/121.html 
# description: ECC椭圆曲线加密算法实现 
""" 
 考虑K=kG ,其中K、G为椭圆曲线Ep(a,b)上的点,n为G的阶(nG=O∞ ),k为小于n的整数。 
 则给定k和G,根据加法法则,计算K很容易但反过来,给定K和G,求k就非常困难。 
 因为实际使用中的ECC原则上把p取得相当大,n也相当大,要把n个解点逐一算出来列成上表是不可能的。 
 这就是椭圆曲线加密算法的数学依据 
 点G称为基点(base point) 
 k(k<n)为私有密钥(privte key) 
 K为公开密钥(public key) 
""" 
 
def get_inverse(mu, p): 
 """ 
 获取y的负元 
 """ 
 for i in range(1, p): 
  if (i*mu)%p == 1: 
   return i 
 return -1 
 
def get_gcd(zi, mu): 
 """ 
 获取最大公约数 
 """ 
 if mu: 
  return get_gcd(mu, zi%mu) 
 else: 
  return zi 
 
def get_np(x1, y1, x2, y2, a, p): 
 """ 
 获取n*p,每次+p,直到求解阶数np=-p 
 """ 
 flag = 1 # 定义符号位(+/-) 
 
 # 如果 p=q k=(3x2+a)/2y1mod p 
 if x1 == x2 and y1 == y2: 
  zi = 3 * (x1 ** 2) + a # 计算分子  【求导】 
  mu = 2 * y1 # 计算分母 
 
 # 若P≠Q,则k=(y2-y1)/(x2-x1) mod p 
 else: 
  zi = y2 - y1 
  mu = x2 - x1 
  if zi* mu < 0: 
   flag = 0  # 符号0为-(负数) 
   zi = abs(zi) 
   mu = abs(mu) 
 
 # 将分子和分母化为最简 
 gcd_value = get_gcd(zi, mu)  # 最大公?? 
 zi = zi // gcd_value   # 整除 
 mu = mu // gcd_value 
 # 求分母的逆元 逆元: ∀a ∈G ,ョb∈G 使得 ab = ba = e 
 # P(x,y)的负元是 (x,-y mod p)= (x,p-y) ,有P+(-P)= O∞ 
 inverse_value = get_inverse(mu, p) 
 k = (zi * inverse_value) 
 
 if flag == 0:     # 斜率负数 flag==0 
  k = -k 
 k = k % p 
 # 计算x3,y3 P+Q 
 """ 
  x3≡k2-x1-x2(mod p) 
  y3≡k(x1-x3)-y1(mod p) 
 """ 
 x3 = (k ** 2 - x1 - x2) % p 
 y3 = (k * (x1 - x3) - y1) % p 
 return x3,y3 
 
def get_rank(x0, y0, a, b, p): 
 """ 
 获取椭圆曲线的阶 
 """ 
 x1 = x0    #-p的x坐标 
 y1 = (-1*y0)%p  #-p的y坐标 
 tempX = x0 
 tempY = y0 
 n = 1 
 while True: 
  n += 1 
  # 求p+q的和,得到n*p,直到求出阶 
  p_x,p_y = get_np(tempX, tempY, x0, y0, a, p) 
  # 如果 == -p,那么阶数+1,返回 
  if p_x == x1 and p_y == y1: 
   return n+1 
  tempX = p_x 
  tempY = p_y 
 
def get_param(x0, a, b, p): 
 """ 
 计算p与-p 
 """ 
 y0 = -1 
 for i in range(p): 
  # 满足取模约束条件,椭圆曲线Ep(a,b),p为质数,x,y∈[0,p-1] 
  if i**2%p == (x0**3 + a*x0 + b)%p: 
   y0 = i 
   break 
 
 # 如果y0没有,返回false 
 if y0 == -1: 
  return False 
 
 # 计算-y(负数取模) 
 x1 = x0 
 y1 = (-1*y0) % p 
 return x0,y0,x1,y1 
 
def get_graph(a, b, p): 
 """ 
 输出椭圆曲线散点图 
 """ 
 x_y = [] 
 # 初始化二维数组 
 for i in range(p): 
  x_y.append(['-' for i in range(p)]) 
 
 for i in range(p): 
  val =get_param(i, a, b, p) # 椭圆曲线上的点 
  if(val != False): 
   x0,y0,x1,y1 = val 
   x_y[x0][y0] = 1 
   x_y[x1][y1] = 1 
 
 print("椭圆曲线的散列图为:") 
 for i in range(p):    # i= 0-> p-1 
  temp = p-1-i  # 倒序 
 
  # 格式化输出1/2位数,y坐标轴 
  if temp >= 10: 
   print(temp, end=" ") 
  else: 
   print(temp, end=" ") 
 
  # 输出具体坐标的值,一行 
  for j in range(p): 
   print(x_y[j][temp], end=" ") 
  print("") #换行 
 
 # 输出 x 坐标轴 
 print(" ", end="") 
 for i in range(p): 
  if i >=10: 
   print(i, end=" ") 
  else: 
   print(i, end=" ") 
 print('\n') 
 
def get_ng(G_x, G_y, key, a, p): 
 """ 
 计算nG 
 """ 
 temp_x = G_x 
 temp_y = G_y 
 while key != 1: 
  temp_x,temp_y = get_np(temp_x,temp_y, G_x, G_y, a, p) 
  key -= 1 
 return temp_x,temp_y 
 
def ecc_main(): 
 while True: 
  a = int(input("请输入椭圆曲线参数a(a>0)的值:")) 
  b = int(input("请输入椭圆曲线参数b(b>0)的值:")) 
  p = int(input("请输入椭圆曲线参数p(p为素数)的值:")) #用作模运算 
 
  # 条件满足判断 
  if (4*(a**3)+27*(b**2))%p == 0: 
   print("您输入的参数有误,请重新输入!!!\n") 
  else: 
   break 
 
 # 输出椭圆曲线散点图 
 get_graph(a, b, p) 
 
 # 选点作为G点 
 print("user1:在如上坐标系中选一个值为G的坐标") 
 G_x = int(input("user1:请输入选取的x坐标值:")) 
 G_y = int(input("user1:请输入选取的y坐标值:")) 
 
 # 获取椭圆曲线的阶 
 n = get_rank(G_x, G_y, a, b, p) 
 
 # user1生成私钥,小key 
 key = int(input("user1:请输入私钥小key(<{}):".format(n))) 
 
 # user1生成公钥,大KEY 
 KEY_x,kEY_y = get_ng(G_x, G_y, key, a, p) 
 
 # user2阶段 
 # user2拿到user1的公钥KEY,Ep(a,b)阶n,加密需要加密的明文数据 
 # 加密准备 
 k = int(input("user2:请输入一个整数k(<{})用于求kG和kQ:".format(n))) 
 k_G_x,k_G_y = get_ng(G_x, G_y, k, a, p)       # kG 
 k_Q_x,k_Q_y = get_ng(KEY_x, kEY_y, k, a, p)      # kQ 
 
 # 加密 
 plain_text = input("user2:请输入需要加密的字符串:") 
 plain_text = plain_text.strip() 
 #plain_text = int(input("user1:请输入需要加密的密文:")) 
 c = [] 
 print("密文为:",end="") 
 for char in plain_text: 
  intchar = ord(char) 
  cipher_text = intchar*k_Q_x 
  c.append([k_G_x, k_G_y, cipher_text]) 
  print("({},{}),{}".format(k_G_x, k_G_y, cipher_text),end="-") 
 
 
 # user1阶段 
 # 拿到user2加密的数据进行解密 
 # 知道 k_G_x,k_G_y,key情况下,求解k_Q_x,k_Q_y是容易的,然后plain_text = cipher_text/k_Q_x 
 print("\nuser1解密得到明文:",end="") 
 for charArr in c: 
  decrypto_text_x,decrypto_text_y = get_ng(charArr[0], charArr[1], key, a, p) 
  print(chr(charArr[2]//decrypto_text_x),end="") 
 
if __name__ == "__main__": 
 print("*************ECC椭圆曲线加密*************") 
 ecc_main()

本文主要介绍了MD5,SHA-1,HMAC,DES/AES,RSA和ECC这几种加密算法和python代码示例。

到此这篇关于Python实现常见的几种加密算法的文章就介绍到这了,更多相关Python 加密算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python 全局变量的import机制介绍
Sep 07 Python
解析Python中的eval()、exec()及其相关函数
Dec 20 Python
python+matplotlib实现动态绘制图片实例代码(交互式绘图)
Jan 20 Python
详解Python装饰器
Mar 25 Python
Django中自定义admin Xadmin的实现代码
Aug 09 Python
关于python3中setup.py小概念解析
Aug 22 Python
Python datetime包函数简单介绍
Aug 28 Python
在python中使用pyspark读写Hive数据操作
Jun 06 Python
matplotlib之pyplot模块实现添加子图subplot的使用
Apr 25 Python
python实现过滤敏感词
May 08 Python
python数字转对应中文的方法总结
Aug 02 Python
Python使用DFA算法过滤内容敏感词
Apr 22 Python
Python发送邮件封装实现过程详解
May 09 #Python
pycharm第三方库安装失败的问题及解决经验分享
May 09 #Python
pycharm无法安装第三方库的问题及解决方法以scrapy为例(图解)
May 09 #Python
pip安装提示Twisted错误问题(Python3.6.4安装Twisted错误)
May 09 #Python
Python接口测试数据库封装实现原理
May 09 #Python
解决pycharm安装第三方库失败的问题
May 09 #Python
Python Json数据文件操作原理解析
May 09 #Python
You might like
再说下636单管机
2021/03/02 无线电
ThinkPHP中redirect用法分析
2014/12/05 PHP
PHP实现的memcache环形队列类实例
2015/07/28 PHP
PHP中substr_count()函数获取子字符串出现次数的方法
2016/01/07 PHP
php 输出缓冲 Output Control用法实例详解
2020/03/03 PHP
JS 巧妙获取剪贴板数据 Excel数据的粘贴
2009/07/09 Javascript
js 模拟气泡屏保效果代码
2010/07/10 Javascript
Jquery 动态循环输出表格具体方法
2013/11/23 Javascript
jQuery模拟新浪微博首页滚动效果的方法
2015/03/11 Javascript
JavaScript代码实现左右上下自动晃动自动移动
2016/04/08 Javascript
Jquery实现select multiple左右添加和删除功能的简单实例
2016/05/26 Javascript
浅谈js中的引用和复制(传值和传址)
2016/09/18 Javascript
JavaScript实现图像模糊化的方法实例
2017/01/15 Javascript
Vue组件库发布到npm详解
2018/02/17 Javascript
Vue CLI3 如何支持less的方法示例
2018/08/29 Javascript
基于JavaScript实现随机点名器
2021/02/25 Javascript
Python类的用法实例浅析
2015/05/27 Python
Python爬虫番外篇之Cookie和Session详解
2017/12/27 Python
python Opencv将图片转为字符画
2021/02/19 Python
Python如何发布程序的详细教程
2018/10/09 Python
python分布式计算dispy的使用详解
2019/12/22 Python
Python 模拟动态产生字母验证码图片功能
2019/12/24 Python
Python工程师必考的6个经典面试题
2020/06/28 Python
django美化后台django-suit的安装配置操作
2020/07/12 Python
5 分钟读懂Python 中的 Hook 钩子函数
2020/12/09 Python
英语感恩演讲稿
2014/01/14 职场文书
战友聚会主持词
2014/04/02 职场文书
市场营销工作计划书
2014/05/06 职场文书
考试作弊检讨书怎么写?
2014/12/21 职场文书
2015年七年级班主任工作总结
2015/05/21 职场文书
在职证明书模板
2015/06/15 职场文书
七年级写作指导之游记作文
2019/10/07 职场文书
创业计划书之淘宝网店
2019/10/08 职场文书
apache基于端口创建虚拟主机的示例
2021/04/22 Servers
解决vue $http的get和post请求跨域问题
2021/06/07 Vue.js
详解Java ES多节点任务的高效分发与收集实现
2021/06/30 Java/Android