Python实现常见的几种加密算法(MD5,SHA-1,HMAC,DES/AES,RSA和ECC)


Posted in Python onMay 09, 2020

生活中我们经常会遇到一些加密算法,今天我们就聊聊这些加密算法的Python实现。部分常用的加密方法基本都有对应的Python库,基本不再需要我们用代码实现具体算法。

MD5加密

全称:MD5消息摘要算法(英语:MD5 Message-Digest Algorithm),一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致。md5加密算法是不可逆的,所以解密一般都是通过暴力穷举方法,通过网站的接口实现解密。Python代码:

import hashlib 
m = hashlib.md5() 
m.update(str.encode("utf8")) 
print(m.hexdigest())

SHA1加密

全称:安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA),SHA1比MD5的安全性更强。对于长度小于2^ 64位的消息,SHA1会产生一个160位的消息摘要。Python代码:

import hashlib 
sha1 = hashlib.sha1() 
data = '2333333' 
sha1.update(data.encode('utf-8')) 
sha1_data = sha1.hexdigest() 
print(sha1_data)

HMAC加密

全称:散列消息鉴别码(Hash Message Authentication Code), HMAC加密算法是一种安全的基于加密hash函数和共享密钥的消息认证协议。实现原理是用公开函数和密钥产生一个固定长度的值作为认证标识,用这个标识鉴别消息的完整性。使用一个密钥生成一个固定大小的小数据块,即 MAC,并将其加入到消息中,然后传输。接收方利用与发送方共享的密钥进行鉴别认证等。Python代码:

import hmac 
import hashlib 
# 第一个参数是密钥key,第二个参数是待加密的字符串,第三个参数是hash函数 
mac = hmac.new('key','hello',hashlib.md5) 
mac.digest() # 字符串的ascii格式 
mac.hexdigest() # 加密后字符串的十六进制格式

DES加密

全称:数据加密标准(Data Encryption Standard),属于对称加密算法。DES是一个分组加密算法,典型的DES以64位为分组对数据加密,加密和解密用的是同一个算法。它的密钥长度是56位(因为每个第8 位都用作奇偶校验),密钥可以是任意的56位的数,而且可以任意时候改变。Python代码:

import binascii 
from pyDes import des, CBC, PAD_PKCS5 
# 需要安装 pip install pyDes 
 
def des_encrypt(secret_key, s): 
 iv = secret_key 
 k = des(secret_key, CBC, iv, pad=None, padmode=PAD_PKCS5) 
 en = k.encrypt(s, padmode=PAD_PKCS5) 
 return binascii.b2a_hex(en) 
 
def des_decrypt(secret_key, s): 
 iv = secret_key 
 k = des(secret_key, CBC, iv, pad=None, padmode=PAD_PKCS5) 
 de = k.decrypt(binascii.a2b_hex(s), padmode=PAD_PKCS5) 
 return de 
 
secret_str = des_encrypt('12345678', 'I love YOU~') 
print(secret_str) 
clear_str = des_decrypt('12345678', secret_str) 
print(clear_str)

AES加密

全称:高级加密标准(英语:Advanced Encryption Standard),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。Python代码:

import base64 
from Crypto.Cipher import AES 
 
''' 
AES对称加密算法 
''' 
# 需要补位,str不是16的倍数那就补足为16的倍数 
def add_to_16(value): 
 while len(value) % 16 != 0: 
  value += '\0' 
 return str.encode(value) # 返回bytes 
# 加密方法 
def encrypt(key, text): 
 aes = AES.new(add_to_16(key), AES.MODE_ECB) # 初始化加密器 
 encrypt_aes = aes.encrypt(add_to_16(text)) # 先进行aes加密 
 encrypted_text = str(base64.encodebytes(encrypt_aes), encoding='utf-8') # 执行加密并转码返回bytes 
 return encrypted_text 
# 解密方法 
def decrypt(key, text): 
 aes = AES.new(add_to_16(key), AES.MODE_ECB) # 初始化加密器 
 base64_decrypted = base64.decodebytes(text.encode(encoding='utf-8')) # 优先逆向解密base64成bytes 
 decrypted_text = str(aes.decrypt(base64_decrypted), encoding='utf-8').replace('\0', '') # 执行解密密并转码返回str 
 return decrypted_text

RSA加密

全称:Rivest-Shamir-Adleman,RSA加密算法是一种非对称加密算法。在公开密钥加密和电子商业中RSA被广泛使用。它被普遍认为是目前比较优秀的公钥方案之一。RSA是第一个能同时用于加密和数字签名的算法,它能够抵抗到目前为止已知的所有密码攻击。Python代码:

# -*- coding: UTF-8 -*- 
# reference codes: https://www.jianshu.com/p/7a4645691c68 
 
import base64 
import rsa 
from rsa import common 
 
# 使用 rsa库进行RSA签名和加解密 
class RsaUtil(object): 
 PUBLIC_KEY_PATH = 'xxxxpublic_key.pem' # 公钥 
 PRIVATE_KEY_PATH = 'xxxxxprivate_key.pem' # 私钥 
 
 # 初始化key 
 def __init__(self, 
     company_pub_file=PUBLIC_KEY_PATH, 
     company_pri_file=PRIVATE_KEY_PATH): 
 
  if company_pub_file: 
   self.company_public_key = rsa.PublicKey.load_pkcs1_openssl_pem(open(company_pub_file).read()) 
  if company_pri_file: 
   self.company_private_key = rsa.PrivateKey.load_pkcs1(open(company_pri_file).read()) 
 
 def get_max_length(self, rsa_key, encrypt=True): 
  """加密内容过长时 需要分段加密 换算每一段的长度. 
   :param rsa_key: 钥匙. 
   :param encrypt: 是否是加密. 
  """ 
  blocksize = common.byte_size(rsa_key.n) 
  reserve_size = 11 # 预留位为11 
  if not encrypt: # 解密时不需要考虑预留位 
   reserve_size = 0 
  maxlength = blocksize - reserve_size 
  return maxlength 
 
 # 加密 支付方公钥 
 def encrypt_by_public_key(self, message): 
  """使用公钥加密. 
   :param message: 需要加密的内容. 
   加密之后需要对接过进行base64转码 
  """ 
  encrypt_result = b'' 
  max_length = self.get_max_length(self.company_public_key) 
  while message: 
   input = message[:max_length] 
   message = message[max_length:] 
   out = rsa.encrypt(input, self.company_public_key) 
   encrypt_result += out 
  encrypt_result = base64.b64encode(encrypt_result) 
  return encrypt_result 
 
 def decrypt_by_private_key(self, message): 
  """使用私钥解密. 
   :param message: 需要加密的内容. 
   解密之后的内容直接是字符串,不需要在进行转义 
  """ 
  decrypt_result = b"" 
 
  max_length = self.get_max_length(self.company_private_key, False) 
  decrypt_message = base64.b64decode(message) 
  while decrypt_message: 
   input = decrypt_message[:max_length] 
   decrypt_message = decrypt_message[max_length:] 
   out = rsa.decrypt(input, self.company_private_key) 
   decrypt_result += out 
  return decrypt_result 
 
 # 签名 商户私钥 base64转码 
 def sign_by_private_key(self, data): 
  """私钥签名. 
   :param data: 需要签名的内容. 
   使用SHA-1 方法进行签名(也可以使用MD5) 
   签名之后,需要转义后输出 
  """ 
  signature = rsa.sign(str(data), priv_key=self.company_private_key, hash='SHA-1') 
  return base64.b64encode(signature) 
 
 def verify_by_public_key(self, message, signature): 
  """公钥验签. 
   :param message: 验签的内容. 
   :param signature: 对验签内容签名的值(签名之后,会进行b64encode转码,所以验签前也需转码). 
  """ 
  signature = base64.b64decode(signature) 
  return rsa.verify(message, signature, self.company_public_key)

ECC加密

全称:椭圆曲线加密(Elliptic Curve Cryptography),ECC加密算法是一种公钥加密技术,以椭圆曲线理论为基础。利用有限域上椭圆曲线的点构成的Abel群离散对数难解性,实现加密、解密和数字签名。将椭圆曲线中的加法运算与离散对数中的模乘运算相对应,就可以建立基于椭圆曲线的对应密码体制。Python代码:

# -*- coding:utf-8 *- 
# author: DYBOY 
# reference codes: https://blog.dyboy.cn/websecurity/121.html 
# description: ECC椭圆曲线加密算法实现 
""" 
 考虑K=kG ,其中K、G为椭圆曲线Ep(a,b)上的点,n为G的阶(nG=O∞ ),k为小于n的整数。 
 则给定k和G,根据加法法则,计算K很容易但反过来,给定K和G,求k就非常困难。 
 因为实际使用中的ECC原则上把p取得相当大,n也相当大,要把n个解点逐一算出来列成上表是不可能的。 
 这就是椭圆曲线加密算法的数学依据 
 点G称为基点(base point) 
 k(k<n)为私有密钥(privte key) 
 K为公开密钥(public key) 
""" 
 
def get_inverse(mu, p): 
 """ 
 获取y的负元 
 """ 
 for i in range(1, p): 
  if (i*mu)%p == 1: 
   return i 
 return -1 
 
def get_gcd(zi, mu): 
 """ 
 获取最大公约数 
 """ 
 if mu: 
  return get_gcd(mu, zi%mu) 
 else: 
  return zi 
 
def get_np(x1, y1, x2, y2, a, p): 
 """ 
 获取n*p,每次+p,直到求解阶数np=-p 
 """ 
 flag = 1 # 定义符号位(+/-) 
 
 # 如果 p=q k=(3x2+a)/2y1mod p 
 if x1 == x2 and y1 == y2: 
  zi = 3 * (x1 ** 2) + a # 计算分子  【求导】 
  mu = 2 * y1 # 计算分母 
 
 # 若P≠Q,则k=(y2-y1)/(x2-x1) mod p 
 else: 
  zi = y2 - y1 
  mu = x2 - x1 
  if zi* mu < 0: 
   flag = 0  # 符号0为-(负数) 
   zi = abs(zi) 
   mu = abs(mu) 
 
 # 将分子和分母化为最简 
 gcd_value = get_gcd(zi, mu)  # 最大公?? 
 zi = zi // gcd_value   # 整除 
 mu = mu // gcd_value 
 # 求分母的逆元 逆元: ∀a ∈G ,ョb∈G 使得 ab = ba = e 
 # P(x,y)的负元是 (x,-y mod p)= (x,p-y) ,有P+(-P)= O∞ 
 inverse_value = get_inverse(mu, p) 
 k = (zi * inverse_value) 
 
 if flag == 0:     # 斜率负数 flag==0 
  k = -k 
 k = k % p 
 # 计算x3,y3 P+Q 
 """ 
  x3≡k2-x1-x2(mod p) 
  y3≡k(x1-x3)-y1(mod p) 
 """ 
 x3 = (k ** 2 - x1 - x2) % p 
 y3 = (k * (x1 - x3) - y1) % p 
 return x3,y3 
 
def get_rank(x0, y0, a, b, p): 
 """ 
 获取椭圆曲线的阶 
 """ 
 x1 = x0    #-p的x坐标 
 y1 = (-1*y0)%p  #-p的y坐标 
 tempX = x0 
 tempY = y0 
 n = 1 
 while True: 
  n += 1 
  # 求p+q的和,得到n*p,直到求出阶 
  p_x,p_y = get_np(tempX, tempY, x0, y0, a, p) 
  # 如果 == -p,那么阶数+1,返回 
  if p_x == x1 and p_y == y1: 
   return n+1 
  tempX = p_x 
  tempY = p_y 
 
def get_param(x0, a, b, p): 
 """ 
 计算p与-p 
 """ 
 y0 = -1 
 for i in range(p): 
  # 满足取模约束条件,椭圆曲线Ep(a,b),p为质数,x,y∈[0,p-1] 
  if i**2%p == (x0**3 + a*x0 + b)%p: 
   y0 = i 
   break 
 
 # 如果y0没有,返回false 
 if y0 == -1: 
  return False 
 
 # 计算-y(负数取模) 
 x1 = x0 
 y1 = (-1*y0) % p 
 return x0,y0,x1,y1 
 
def get_graph(a, b, p): 
 """ 
 输出椭圆曲线散点图 
 """ 
 x_y = [] 
 # 初始化二维数组 
 for i in range(p): 
  x_y.append(['-' for i in range(p)]) 
 
 for i in range(p): 
  val =get_param(i, a, b, p) # 椭圆曲线上的点 
  if(val != False): 
   x0,y0,x1,y1 = val 
   x_y[x0][y0] = 1 
   x_y[x1][y1] = 1 
 
 print("椭圆曲线的散列图为:") 
 for i in range(p):    # i= 0-> p-1 
  temp = p-1-i  # 倒序 
 
  # 格式化输出1/2位数,y坐标轴 
  if temp >= 10: 
   print(temp, end=" ") 
  else: 
   print(temp, end=" ") 
 
  # 输出具体坐标的值,一行 
  for j in range(p): 
   print(x_y[j][temp], end=" ") 
  print("") #换行 
 
 # 输出 x 坐标轴 
 print(" ", end="") 
 for i in range(p): 
  if i >=10: 
   print(i, end=" ") 
  else: 
   print(i, end=" ") 
 print('\n') 
 
def get_ng(G_x, G_y, key, a, p): 
 """ 
 计算nG 
 """ 
 temp_x = G_x 
 temp_y = G_y 
 while key != 1: 
  temp_x,temp_y = get_np(temp_x,temp_y, G_x, G_y, a, p) 
  key -= 1 
 return temp_x,temp_y 
 
def ecc_main(): 
 while True: 
  a = int(input("请输入椭圆曲线参数a(a>0)的值:")) 
  b = int(input("请输入椭圆曲线参数b(b>0)的值:")) 
  p = int(input("请输入椭圆曲线参数p(p为素数)的值:")) #用作模运算 
 
  # 条件满足判断 
  if (4*(a**3)+27*(b**2))%p == 0: 
   print("您输入的参数有误,请重新输入!!!\n") 
  else: 
   break 
 
 # 输出椭圆曲线散点图 
 get_graph(a, b, p) 
 
 # 选点作为G点 
 print("user1:在如上坐标系中选一个值为G的坐标") 
 G_x = int(input("user1:请输入选取的x坐标值:")) 
 G_y = int(input("user1:请输入选取的y坐标值:")) 
 
 # 获取椭圆曲线的阶 
 n = get_rank(G_x, G_y, a, b, p) 
 
 # user1生成私钥,小key 
 key = int(input("user1:请输入私钥小key(<{}):".format(n))) 
 
 # user1生成公钥,大KEY 
 KEY_x,kEY_y = get_ng(G_x, G_y, key, a, p) 
 
 # user2阶段 
 # user2拿到user1的公钥KEY,Ep(a,b)阶n,加密需要加密的明文数据 
 # 加密准备 
 k = int(input("user2:请输入一个整数k(<{})用于求kG和kQ:".format(n))) 
 k_G_x,k_G_y = get_ng(G_x, G_y, k, a, p)       # kG 
 k_Q_x,k_Q_y = get_ng(KEY_x, kEY_y, k, a, p)      # kQ 
 
 # 加密 
 plain_text = input("user2:请输入需要加密的字符串:") 
 plain_text = plain_text.strip() 
 #plain_text = int(input("user1:请输入需要加密的密文:")) 
 c = [] 
 print("密文为:",end="") 
 for char in plain_text: 
  intchar = ord(char) 
  cipher_text = intchar*k_Q_x 
  c.append([k_G_x, k_G_y, cipher_text]) 
  print("({},{}),{}".format(k_G_x, k_G_y, cipher_text),end="-") 
 
 
 # user1阶段 
 # 拿到user2加密的数据进行解密 
 # 知道 k_G_x,k_G_y,key情况下,求解k_Q_x,k_Q_y是容易的,然后plain_text = cipher_text/k_Q_x 
 print("\nuser1解密得到明文:",end="") 
 for charArr in c: 
  decrypto_text_x,decrypto_text_y = get_ng(charArr[0], charArr[1], key, a, p) 
  print(chr(charArr[2]//decrypto_text_x),end="") 
 
if __name__ == "__main__": 
 print("*************ECC椭圆曲线加密*************") 
 ecc_main()

本文主要介绍了MD5,SHA-1,HMAC,DES/AES,RSA和ECC这几种加密算法和python代码示例。

到此这篇关于Python实现常见的几种加密算法的文章就介绍到这了,更多相关Python 加密算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python 正则表达式 概述及常用字符
May 04 Python
Python cx_freeze打包工具处理问题思路及解决办法
Feb 13 Python
使用Python的Django框架结合jQuery实现AJAX购物车页面
Apr 11 Python
Python表示矩阵的方法分析
May 26 Python
python dataframe 输出结果整行显示的方法
Jun 14 Python
Python判断中文字符串是否相等的实例
Jul 06 Python
Python使用jsonpath-rw模块处理Json对象操作示例
Jul 31 Python
浅谈pycharm出现卡顿的解决方法
Dec 03 Python
Django处理多用户类型的方法介绍
May 18 Python
Django 查询数据库并返回页面的例子
Aug 12 Python
Python使用多进程运行含有任意个参数的函数
May 02 Python
详解python爬取弹幕与数据分析
Nov 14 Python
Python发送邮件封装实现过程详解
May 09 #Python
pycharm第三方库安装失败的问题及解决经验分享
May 09 #Python
pycharm无法安装第三方库的问题及解决方法以scrapy为例(图解)
May 09 #Python
pip安装提示Twisted错误问题(Python3.6.4安装Twisted错误)
May 09 #Python
Python接口测试数据库封装实现原理
May 09 #Python
解决pycharm安装第三方库失败的问题
May 09 #Python
Python Json数据文件操作原理解析
May 09 #Python
You might like
PHP 已经成熟
2006/12/04 PHP
PHP函数strip_tags的一个bug浅析
2014/05/22 PHP
浅析php适配器模式(Adapter)
2014/11/25 PHP
php通过strpos查找字符串出现位置的方法
2015/03/17 PHP
php实现文件与16进制相互转换的方法示例
2017/02/16 PHP
Yii2框架操作数据库的方法分析【以mysql为例】
2019/05/27 PHP
利用js获取服务器时间的两个简单方法
2010/01/08 Javascript
读jQuery之十一 添加事件核心方法
2011/07/31 Javascript
jQuery 在光标定位的地方插入文字的插件
2012/05/10 Javascript
Asp.Net alert弹出提示信息的几种方法总结
2014/01/29 Javascript
jQuery中eq()方法用法实例
2015/01/05 Javascript
js中的事件捕捉模型与冒泡模型实例分析
2015/01/10 Javascript
JavaScript实现算术平方根算法-代码超简单
2015/09/11 Javascript
javascript实现网页端解压并查看zip文件
2015/12/15 Javascript
由浅入深剖析Angular表单验证
2016/07/14 Javascript
JS防止网页被嵌入iframe框架的方法分析
2016/09/13 Javascript
BootStrap实现带有增删改查功能的表格(DEMO详解)
2016/10/26 Javascript
关于Javascript中document.cookie的使用
2017/03/08 Javascript
浅谈Node.js轻量级Web框架Express4.x使用指南
2017/05/03 Javascript
浅谈Vue SSR 的 Cookies 问题
2017/11/20 Javascript
微信小程序页面滚动到指定位置代码实例
2019/09/07 Javascript
如何正确理解vue中的key详解
2019/11/02 Javascript
浅谈用Python实现一个大数据搜索引擎
2017/11/28 Python
Python使用pip安装报错:is not a supported wheel on this platform的解决方法
2018/01/23 Python
Python zip()函数用法实例分析
2018/03/17 Python
Python中logging实例讲解
2019/01/17 Python
opencv与numpy的图像基本操作
2019/03/08 Python
Python中的asyncio代码详解
2019/06/10 Python
python和c语言的主要区别总结
2019/07/07 Python
Django 创建新App及其常用命令的实现方法
2019/08/04 Python
PIL对上传到Django的图片进行处理并保存的实例
2019/08/07 Python
使用HTML5的File实现base64和图片的互转
2013/08/01 HTML / CSS
梵蒂冈和罗马卡:Omnia Card Pass
2018/02/10 全球购物
J2ee常用的设计模式?说明工厂模式
2015/05/21 面试题
个人简历的自荐信
2013/10/23 职场文书
2015年公路路政个人工作总结
2015/07/24 职场文书