基于Python的PIL库学习详解


Posted in Python onMay 10, 2019

摘要

对于图像识别,大量的工作在于图像的处理,处理效果好,那么才能很好地识别,因此,良好的图像处理是识别的基础。在Python中,有一个优秀的图像处理框架,就是PIL库,本博文会分模块,介绍PIL库中的各种方法,并列举相关例子。

参考:http://pillow-cn.readthedocs.io/zh_CN/latest/reference/index.html

网站上列举了PIL库中所有的模块和方法,但是没有相关的例子,博文中会尽量给出相关的例子和进行简单的讲解。

基于的环境:Win10,Python2.7,PIL 1.1.7。

Image模块

开篇的例子

首先,给出Image模块中的一个简单的例子。例子实现的功能是:读取图片,并进行45°旋转,然后进行可视化。

# -*- coding:utf-8 -*-
# Image模块开篇例子
from PIL import Image
im = Image.open('test.bmp') # 读取图片
im.rotate(45).show() # 将图片旋转,并用系统自带的图片工具显示图片

创建缩略图

# -*- coding:utf-8 -*-
# PIL中创建缩略图(create thumbnails)
from PIL import Image
import glob,os

size = 128,128

for infile in glob.glob("*.jpg"): # glob的作用是文件搜索,返回的是一个列表
  file,ext = os.path.splitext(infile) # 将文件的文件名和拓展名分开,用于之后的保存重命名
  im = Image.open(infile)
  im.thumbnail(size,Image.ANTIALIAS) # 等比例缩放
  im.save(file+".thumbnail","JPEG")
  #im.show() # 显示缩略图
  #print im.size,im.mode

缩略图不能直接双击打开,而可以使用PIL.image的open读取,然后使用show()方法进行显示。

图像处理

PIL.image.alpha_composite(im1,im2)

PIL.image.blend(im1,im2,alpha)

PIL.Image.composite(im1,im2,mask)

这三个方法都属于图片的合成或者融合。都要求im1和im2的mode和size要一致,alpha代表图片占比的意思,而mask是mode可以为”1”,”L”或者”RGBA”的size和im1、im2一致的。

# coding:utf-8 -*-
from PIL import Image
# 图片合成

# PIL的alpha_composite(im1,im2) 图像通道融合
# im2要和im1的size和mode一致,且要求格式为RGBA
im1 = Image.open("test.png")
im2 = Image.open("test2.png")

newim1 = Image.alpha_composite(im1,im2) # 将im2合成到im1中,如果其一是透明的,
# 才能看到结果,不然最终结果只会显示出im2
newim1.show()
#print(im1.mode)

# -----------------------------------------
# image.blend(im1,im2,alpha)
# alpha为透明度
newim2 = Image.blend(im1,im2,0.5)
newim2.show()

# -----------------------------------------
mask = Image.open("mask.png")
newim3 = Image.composite(im2,im1,mask)
newim3.show()

PIL.image.eval(image,*args)

程序:

# -*- coding:utf-8 -*-
from PIL import Image
im = Image.open("test.png")

imnew = Image.eval(im,lambda i:i*2) # 将原图片的像素点,都乘2,返回的是一个Image对象
#print imnew.mode
imnew.show()
im.show()

创建图像

(1) PIL.image.new(mode,size,color=0)

使用模式和大小,创建一个新的图像。其中,mode可以是”L”,”RGB”,”RGBA”;而size则是一个tuple(元组),color应该和mode相对应。

下面例子,分别创建”L”、”RGB”和”RGBA”的图片。

# -*- coding:utf-8 -*-
from PIL import Image
# 创建图像
# 创建一个灰度图像

newL = Image.new("L",(28,28),255)
newL.show()

# 创建一个RGb图像
newrgb = Image.new("RGB",(28,28),(20,200,45))
newrgb.show()

newrgba = Image.new("RGBA",(28,28),(20,200,45,255))
newrgba.show()
print "The frist image:",newL.size,newL.mode
print "The second image:",newrgb.size,newrgb.mode
print "The third image:",newrgba.size,newrgba.mode

(2)以其他形式创建图像

a. 以数组的形式创建图像,PIL.image.fromarray(obj,mode=None)

obj - 图像的数组,类型可以是numpy.array()

mode - 如果不给出,会自动判断

本人觉得这个功能还是挺实用的,可以将一个数组(具体一点就是像素数组)转换为图像,从图像的本质去处理图像。

下面一段程序,就是用fromarray()函数实现图像的灰度化(使用了两种方法)。

# -*- coding:utf-8 -*-
from PIL import Image
import numpy as np
a = Image.open("fromimg.png")
a.show()
b = a.resize((28,28))
datab = list(b.getdata())
#print type(datab)
obj1 = []
obj2 = []
for i in range(len(datab)):
  obj1.append([sum(datab[i])/3]) # 灰度化方法1:RGB三个分量的均值
  obj2.append([0.3*datab[i][0]+0.59*datab[i][1]+0.11*datab[i][2]])
  #灰度化方法2:根据亮度与RGB三个分量的对应关系:Y=0.3*R+0.59*G+0.11*B

obj1 = np.array(obj1).reshape((28,28))
obj2 = np.array(obj2).reshape((28,28))
print obj1
print obj2

arrayimg1 = Image.fromarray(obj1)
arrayimg2 = Image.fromarray(obj2)
arrayimg1.show()
arrayimg2.show()

显然,两种方法都能成功灰度化。

还有:

PIL.Image.frombytes(mode,size,data,decoder_name='raw',*args)

PIL.Image.fromstring(*args,**kw)

PIL.Image.frombuffer(mode,size,data,decoder_name='raw',*args)

感觉不常用,没有仔细研究。

Image模块下的Image类

下面的Image是一个图像对象,而不是模块!

(1) Image.convert(mode=None,matrix=None,dither=None,palette=0,color=256)

该方法,同样可以实现上面的灰度化处理。

# -*- coding:utf-8 -*-
from PIL import Image
img = Image.open("test.png")
# 灰度化:将RGB/RGBA -> L
img = img.convert("L")
img.show()

(2) Image.copy()

将读取的图片复制一份。

# -*- coding:utf-8 -*-
from PIL import Image
img = Image.open("test.png")
# 灰度化:将RGB/RGBA -> L
img = img.convert("L")
#img.show()

# ------ copy()----------
img1 = img.copy()
img1.show()

将灰度化的图片复制一份,因此该程序的运行结果和之前的一致。

(3) Image.filter(filter)

该函数是用于图像滤波的,PIL中自带了很多的滤波器,就是括号中的filter的参数。filter应该是一个ImaageFilter模块下的对象。这里把ImageFilter模块讲了。其实,该模块就是提供滤波器。自带的滤波器有:

使用中值滤波:

# -*- coding:utf-8 -*-
from PIL import Image
from PIL import ImageFilter

# BLUR - 模糊处理
# CONTOUR - 轮廓处理
# DETAIL - 增强
# EDGE_ENHANCE - 将图像的边缘描绘得更清楚
# EDGE_ENHANCE_NORE - 程度比EDGE_ENHANCE更强
# EMBOSS - 产生浮雕效果
# SMOOTH - 效果与EDGE_ENHANCE相反,将轮廓柔和
# SMOOTH_MORE - 更柔和
# SHARPEN - 效果有点像DETAIL
testimg = Image.open("filter1.png")
testimg.show()
filterimg = testimg.filter(ImageFilter.MedianFilter)
filterimg.show()

(4) 使用各种方法/函数获取图片的基本信息

Image.getbands()

Image.geebbox()

Image.getcolors(maxcolor=256)

Image.getdata(band=None)(一般和list()结合使用)

Image.getextrema()

Image.getpixel((x,y))

Image.histogram(mask=None,extrema=None)

# -*- coding:utf-8 -*-
from PIL import Image
img1 = Image.open("test.png")
img1.show()

# getbands() - 显示该图像的所有通道,返回一个tuple
bands = img1.getbands()
print bands

# getbbox() - 返回一个像素坐标,4个元素的tuple
bboxs = img1.getbbox()
print bboxs

# getcolors() - 返回像素信息,是一个含有元素的列表[(该种像素的数量,(该种像素)),(...),...]
colors = img1.getcolors()
print colors

# getdata() - 返回图片所有的像素值,要使用list()才能显示出具体数值
#data = list(img1.getdata())
#print data

# getextrema() - 获取图像中每个通道的像素最小和最大值,是一个tuple类型
extremas = img1.getextrema()
print extremas

# getpixel() - 获取该坐标
pixels = img1.getpixel((87,180))
print pixels

# histogram() - 返回图片的像素直方图
print(img1.histogram())

运行结果:

('R', 'G', 'B', 'A')
(0, 0, 338, 238)
[(73463, (255, 255, 255, 255)), (32, (252, 249, 252, 255)), (1, (255, 189, 143, 255)), (12, (255, 199, 160, 255)), (22, (247, 239, 247, 255)), (3, (255, 242, 246, 255)), (9, (238, 221, 238, 255)), (9, (235, 215, 235, 255)), (5, (232, 209, 232, 255)), (1, (255, 228, 209, 255)), (2, (255, 210, 225, 255)), (1, (255, 202, 201, 255)), (3, (255, 158, 92, 255)), (22, (218, 181, 218, 255)), (1, (217, 181, 218, 255)), (2, (255, 232, 217, 255)), (16, (255, 195, 153, 255)), (22, (212, 169, 212, 255)), (3, (211, 169, 212, 255)), (1, (204, 153, 204, 255)), (1, (255, 229, 238, 255)), (53, (255, 131, 46, 255)), (9, (255, 203, 167, 255)), (1, (255, 157, 90, 255)), (3, (186, 119, 187, 255)), (2, (255, 217, 229, 255)), (6, (183, 113, 184, 255)), (1, (255, 212, 227, 255)), (14, (214, 175, 215, 255)), (2, (255, 182, 131, 255)), (12, (166, 79, 167, 255)), (2, (255, 180, 127, 255)), (4309, (255, 127, 39, 255)), (737, (163, 73, 164, 255)), (4, (255, 252, 253, 255)), (3, (255, 232, 216, 255)), (9, (255, 250, 233, 255)), (1, (255, 245, 248, 255)), (34, (255, 239, 228, 255)), (3, (255, 142, 64, 255)), (1, (255, 162, 98, 255)), (19, (255, 247, 241, 255)), (7, (255, 223, 201, 255)), (2, (255, 133, 49, 255)), (16, (255, 221, 232, 255)), (58, (255, 235, 221, 255)), (1, (255, 225, 204, 255)), (2, (255, 219, 194, 255)), (21, (255, 175, 120, 255)), (6, (255, 182, 206, 255)), (37, (255, 243, 235, 255)), (3, (255, 179, 127, 255)), (6, (255, 207, 223, 255)), (3, (255, 232, 240, 255)), (1, (255, 134, 51, 255)), (2, (255, 222, 233, 255)), (2, (255, 218, 192, 255)), (1, (255, 186, 186, 255)), (1, (255, 163, 99, 255)), (1, (255, 207, 173, 255)), (8, (255, 151, 80, 255)), (1, (255, 184, 201, 255)), (19, (255, 211, 180, 255)), (1, (255, 143, 65, 255)), (9, (255, 233, 158, 255)), (18, (255, 215, 187, 255)), (1, (255, 185, 136, 255)), (7, (255, 227, 237, 255)), (22, (255, 163, 100, 255)), (1, (255, 221, 198, 255)), (5, (255, 184, 208, 255)), (10, (255, 195, 215, 255)), (5, (255, 239, 182, 255)), (1, (255, 197, 157, 255)), (1, (255, 154, 85, 255)), (1, (255, 136, 55, 255)), (8, (255, 240, 190, 255)), (14, (255, 216, 229, 255)), (3, (255, 179, 204, 255)), (1, (255, 143, 67, 255)), (1, (255, 196, 155, 255)), (19, (255, 249, 227, 255)), (2, (255, 211, 181, 255)), (10, (255, 230, 142, 255)), (4, (255, 187, 140, 255)), (195, (255, 201, 14, 255)), (2, (255, 129, 42, 255)), (1, (255, 131, 47, 255)), (12, (255, 231, 214, 255)), (1, (255, 181, 151, 255)), (8, (249, 244, 249, 255)), (13, (246, 238, 246, 255)), (44, (244, 234, 244, 255)), (1, (243, 232, 244, 255)), (7, (240, 226, 241, 255)), (25, (255, 167, 107, 255)), (24, (255, 215, 229, 255)), (22, (230, 206, 230, 255)), (6, (229, 204, 229, 255)), (3, (255, 130, 45, 255)), (11, (227, 200, 228, 255)), (4, (226, 198, 226, 255)), (3, (255, 127, 40, 255)), (5, (223, 192, 223, 255)), (9, (220, 186, 221, 255)), (172, (255, 174, 201, 255)), (16, (255, 231, 239, 255)), (1, (255, 171, 113, 255)), (33, (209, 164, 209, 255)), (1, (255, 192, 213, 255)), (6, (255, 247, 250, 255)), (2, (255, 136, 54, 255)), (9, (255, 253, 247, 255)), (1, (255, 171, 114, 255)), (2, (255, 147, 73, 255)), (5, (255, 181, 130, 255)), (7, (189, 124, 190, 255)), (1, (255, 199, 161, 255)), (13, (255, 183, 134, 255)), (3, (255, 152, 82, 255)), (2, (255, 156, 88, 255)), (32, (255, 143, 66, 255)), (5, (178, 102, 178, 255)), (6, (175, 96, 176, 255)), (8, (255, 129, 43, 255)), (4, (172, 90, 173, 255)), (1, (255, 168, 109, 255)), (1, (255, 153, 83, 255)), (1, (255, 174, 118, 255)), (1, (255, 172, 115, 255)), (1, (255, 148, 75, 255)), (8, (255, 244, 248, 255)), (1, (255, 130, 43, 255)), (5, (255, 205, 222, 255)), (1, (255, 210, 177, 255)), (1, (255, 170, 110, 255)), (1, (255, 157, 89, 255)), (1, (255, 197, 134, 255)), (13, (255, 155, 86, 255)), (3, (255, 137, 56, 255)), (2, (255, 138, 57, 255)), (11, (255, 227, 208, 255)), (1, (255, 190, 145, 255)), (2, (255, 155, 87, 255)), (1, (169, 84, 170, 255)), (4, (255, 202, 220, 255)), (6, (255, 139, 59, 255)), (1, (255, 128, 42, 255)), (1, (255, 158, 91, 255)), (1, (255, 198, 158, 255)), (5, (255, 130, 44, 255)), (1, (255, 202, 165, 255)), (1, (255, 187, 154, 255)), (1, (255, 132, 48, 255)), (1, (255, 154, 84, 255)), (1, (255, 235, 241, 255)), (7, (255, 135, 53, 255)), (62, (255, 159, 93, 255)), (2, (255, 177, 124, 255)), (4, (255, 187, 210, 255)), (11, (255, 251, 248, 255)), (1, (255, 229, 211, 255)), (1, (255, 208, 176, 255)), (1, (255, 133, 50, 255)), (2, (255, 219, 231, 255)), (2, (255, 141, 63, 255)), (2, (255, 146, 71, 255)), (1, (255, 160, 95, 255)), (2, (255, 184, 135, 255)), (1, (255, 208, 175, 255)), (1, (255, 139, 61, 255)), (1, (255, 189, 211, 255)), (2, (255, 145, 69, 255)), (263, (255, 191, 147, 255)), (4, (255, 187, 141, 255)), (3, (255, 250, 252, 255)), (1, (255, 147, 72, 255)), (5, (255, 177, 203, 255)), (1, (255, 169, 109, 255)), (62, (255, 207, 174, 255))]
((163, 255), (73, 255), (14, 255), (255, 255))
(255, 127, 39, 255)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 737, 0, 0, 12, 0, 0, 1, 0, 0, 4, 0, 0, 6, 0, 0, 5, 0, 0, 0, 0, 6, 0, 0, 3, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 33, 0, 3, 22, 0, 14, 0, 0, 1, 22, 0, 9, 0, 0, 5, 0, 0, 4, 11, 0, 6, 22, 0, 5, 0, 0, 9, 0, 0, 9, 0, 7, 0, 0, 1, 44, 0, 13, 22, 0, 8, 0, 0, 32, 0, 0, 79360, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 737, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 7, 0, 0, 4312, 1, 10, 9, 54, 1, 3, 1, 7, 3, 3, 2, 7, 0, 2, 3, 34, 0, 2, 2, 3, 1, 0, 0, 8, 3, 2, 2, 15, 2, 2, 4, 62, 1, 0, 1, 23, 33, 0, 0, 25, 1, 26, 1, 2, 1, 0, 173, 35, 0, 7, 0, 6, 2, 29, 8, 13, 8, 1, 10, 13, 0, 2, 1, 263, 6, 0, 0, 26, 1, 2, 5, 13, 11, 195, 6, 9, 6, 5, 22, 69, 2, 5, 3, 21, 1, 0, 0, 51, 14, 2, 2, 4, 0, 26, 2, 7, 0, 1, 7, 18, 1, 2, 10, 28, 9, 9, 44, 59, 0, 0, 13, 61, 8, 0, 3, 37, 16, 1, 0, 25, 0, 51, 12, 11, 4, 9, 0, 73463, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 195, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4309, 3, 0, 3, 9, 5, 3, 53, 1, 1, 2, 1, 1, 0, 7, 2, 1, 3, 2, 0, 6, 0, 1, 0, 2, 3, 1, 32, 1, 0, 2, 0, 2, 1, 2, 0, 1, 0, 0, 0, 0, 8, 0, 3, 1, 1, 1, 13, 2, 2, 1, 1, 1, 3, 62, 0, 1, 0, 0, 1, 1, 22, 0, 0, 0, 0, 0, 0, 25, 0, 2, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 21, 0, 0, 0, 2, 0, 0, 5, 0, 0, 5, 2, 0, 0, 14, 2, 1, 0, 0, 0, 4, 4, 10, 1, 0, 1, 0, 263, 0, 0, 0, 1, 0, 16, 1, 1, 0, 1, 10, 0, 12, 1, 0, 0, 737, 1, 0, 21, 0, 0, 1, 0, 0, 5, 62, 1, 7, 1, 5, 0, 19, 2, 5, 0, 6, 0, 1, 21, 0, 0, 15, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 181, 0, 5, 5, 0, 6, 0, 16, 34, 4, 2, 25, 1, 12, 24, 3, 2, 23, 0, 4, 67, 5, 11, 0, 2, 4, 20, 45, 46, 22, 2, 21, 11, 0, 46, 0, 7, 10, 16, 3, 27, 0, 0, 45, 0, 16, 31, 20, 8, 6, 0, 35, 4, 0, 73463, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 80444]

(5) 图像粘贴操作(paste)

Image.paste(im,box=None,maske=None)

使用im粘贴到原图片中。注意:两个图片的mode和size要求一致,不一致可以使用convert()和resize()进行调整。

# -*- coding:utf-8 -*-
from PIL import Image
rawimg = Image.open("qqtou.png")
print rawimg.size

im = Image.open("number.png")
print im.size

# rawimg的size和im的size要相同,不然不能匹配
# paste(用来粘贴的图片,(位置坐标)),可以通过设置位置坐标来确定粘贴图片的位置
# 该方法没有返回值,直接作用于原图片
rawimg.paste(im,(75,-90))
rawimg.show()

(6) 各种put操作

Image.putalpha(alpha) - 添加多一层alpha层,没看出具体效果

Image.putdata(data,scale=1.0,offset=0.0) - 添加一个像素序列到原图像。

# -*- coding:utf-8 -*-
from PIL import Image

img = Image.open("qqtou.png")
img = img.convert("L")
img.show()

imgdata = list(img.getdata())
print imgdata

addlist = []
for i in range(len(imgdata)):
  if imgdata[i]>250:
    addlist.append(imgdata[i]-100)
  else:
    addlist.append(imgdata[i])


# putdata - 将一个序列添加进原图像,没有返回值,直接作用在原图像中
img.putdata(addlist)
img.show()

显然,原始图像(左图)已经发生了改变。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python sys.path详细介绍
Oct 17 Python
Python实现国外赌场热门游戏Craps(双骰子)
Mar 31 Python
简单介绍Python的Django框架加载模版的方式
Jul 20 Python
关于python的list相关知识(推荐)
Aug 30 Python
Python实现动态图解析、合成与倒放
Jan 18 Python
PyCharm 创建指定版本的 Django(超详图解教程)
Jun 18 Python
python实现可变变量名方法详解
Jul 01 Python
python3 线性回归验证方法
Jul 09 Python
python实现桌面气泡提示功能
Jul 29 Python
python爬取百度贴吧前1000页内容(requests库面向对象思想实现)
Aug 10 Python
PyTorch实现AlexNet示例
Jan 14 Python
Python深度学习之实现卷积神经网络
Jun 05 Python
python导入坐标点的具体操作
May 10 #Python
python简单验证码识别的实现方法
May 10 #Python
eclipse创建python项目步骤详解
May 10 #Python
Python实现字符型图片验证码识别完整过程详解
May 10 #Python
使用python PIL库实现简单验证码的去噪方法步骤
May 10 #Python
使用selenium模拟登录解决滑块验证问题的实现
May 10 #Python
python队列Queue的详解
May 10 #Python
You might like
PHP入门学习的几个不错的实例代码
2008/07/13 PHP
php的字符串用法小结
2010/06/08 PHP
PHP删除数组中的特定元素的代码
2012/06/28 PHP
php header函数的常用http头设置
2015/06/25 PHP
PHP简单实现遍历目录下特定文件的方法小结
2017/05/22 PHP
小程序微信支付功能配置方法示例详解【基于thinkPHP】
2019/05/05 PHP
基于jQuery的弹出框插件
2012/03/18 Javascript
JQuery入门——用映射方式绑定不同事件应用示例
2013/02/05 Javascript
jquery拖动插件(jquery.drag)使用介绍
2013/06/18 Javascript
控制input输入框中提示信息的显示和隐藏的方法
2014/02/12 Javascript
jquery通过closest选择器修改上级元素的方法
2015/03/17 Javascript
JavaScript中的bold()方法使用详解
2015/06/08 Javascript
js 颜色选择插件
2017/01/23 Javascript
基于JavaScript实现表格滚动分页
2017/11/22 Javascript
微信小程序中使用ECharts 异步加载数据的方法
2018/06/27 Javascript
npm的lock机制解析
2019/06/20 Javascript
Vue SSR 即时编译技术的实现
2020/05/06 Javascript
[14:19]2018年度COSER大赛-完美盛典
2018/12/16 DOTA
Python Mysql自动备份脚本
2008/07/14 Python
Python与Java间Socket通信实例代码
2017/03/06 Python
完美解决python中ndarray 默认用科学计数法显示的问题
2018/07/14 Python
python爬虫的一个常见简单js反爬详解
2019/07/09 Python
Python concurrent.futures模块使用实例
2019/12/24 Python
Python解析多帧dicom数据详解
2020/01/13 Python
TensorFlow自定义损失函数来预测商品销售量
2020/02/05 Python
python 实现仿微信聊天时间格式化显示的代码
2020/04/17 Python
Python描述数据结构学习之哈夫曼树篇
2020/09/07 Python
Django如何继承AbstractUser扩展字段
2020/11/27 Python
html2canvas生成的图片偏移不完整的解决方法
2020/05/19 HTML / CSS
巴基斯坦电子产品购物网站:Home Shopping
2017/09/14 全球购物
安全资料员岗位职责
2013/12/14 职场文书
2014年教师学期工作总结
2014/11/08 职场文书
OpenCV3.3+Python3.6实现图片高斯模糊
2021/05/18 Python
vue2实现provide inject传递响应式
2021/05/21 Vue.js
SQL优化老出错,那是你没弄明白MySQL解释计划用法
2021/11/27 MySQL
ant design vue的form表单取值方法
2022/06/01 Vue.js