python简单验证码识别的实现方法


Posted in Python onMay 10, 2019

利用SVM向量机进行4位数字验证码识别

       主要是思路和步骤如下:

一,素材收集

检查环境是否包含有相应的库:

1.在cmd中,通过 pip list命令查看安装的库

2.再使用pip installRequests 安装Requests库

3.再次使用pip list 命令

python简单验证码识别的实现方法

4.利用python获取验证码资源

编写代码:_DownloadPic.py

#!/usr/bin/nev python3
#利用python从站点下载验证码图片

import requests

## 1.在 http://www.xxx.com
# 获取验证码URL
def Downloads_Pic(strPath, strName):
 #设置url
 url = 'http://www.xxx.com'

 #以二进制方式发送Get请求,
 #将stream = True,
 #数据读取完成前不要断开链接
 rReq = requests.get(url, stream = True)

 #尝试保存图片
 with open(strPath + strName + '.png', 'wb') as fpPic:
  #循环读取1024Byte到byChunk中,读完则跳出
  for byChunk in rReq.iter_content(chunk_size = 1024):
   if byChunk:
    fpPic.write(byChunk)
    fpPic.flush()
  fpPic.close()

for i in range(1, 10 + 1):
 strFileName = "%03d" % i
 Downloads_Pic('D:/1/', strFileName)

二,素材处理

1.二值化处理,增加对比度,锐化,增加亮度,滤镜,转为黑白

2.去除噪点

3.切割图片

python简单验证码识别的实现方法

编写代码:_PicDealWith.py

#!/usr/bin/env python3
import os
import os.path
from PIL import Image, ImageEnhance, ImageFilter
import random

#二值化处理
#strImgPath 图片路径
def BinaryzationImg(strImgPath):
 #打开图片
 imgOriImg = Image.open(strImgPath)

 #增加对比度
 pocEnhance = ImageEnhance.Contrast(imgOriImg)
 #增加255%对比度
 imgOriImg = pocEnhance.enhance(2.55)

 #锐化
 pocEnhance = ImageEnhance.Sharpness(imgOriImg)
 #锐化200%
 imgOriImg = pocEnhance.enhance(2.0)

 #增加亮度
 pocEnhance = ImageEnhance.Brightness(imgOriImg)
 #增加200%
 imgOriImg = pocEnhance.enhance(2.0)

 #添加滤镜效果
 imgGryImg = imgOriImg.convert('L').filter(ImageFilter.DETAIL)

 #二值化处理
 imgBinImg = imgGryImg.convert('1')

 return imgBinImg

#去除噪点
def ClearNoise(imgBinImg):
 for x in range(1, (imgBinImg.size[0]-1)):
  for y in range(1,(imgBinImg.size[1] - 1)):
  #一个点为黑色,周围8个点为白色,则此点为噪点,设置为白色
   if imgBinImg.getpixel((x, y)) == 0 \
    and imgBinImg.getpixel(((x - 1), (y + 1))) == 255 \
    and imgBinImg.getpixel(((x - 1), y)) == 255 \
    and imgBinImg.getpixel(((x - 1), (y - 1))) == 255 \
    and imgBinImg.getpixel(((x + 1), (y + 1))) == 255 \
    and imgBinImg.getpixel(((x + 1), y)) == 255 \
    and imgBinImg.getpixel(((x + 1), (y - 1))) == 255 \
    and imgBinImg.getpixel((x, (y + 1))) == 255 \
    and imgBinImg.getpixel((x, (y - 1))) == 255:
    imgBinImg.putpixel([x, y], 255)

 return imgBinImg

#切割图片
def GetCropImgs(imgClrImg):
 ImgList = []
 for i in range(4):
  x = 6 + i * 13
  y = 3
  SubImg = imgClrImg.crop((x, y, x + 13, y + 15))
  ImgList.append(SubImg)
 return ImgList


#调用部分
def main():
 g_Count = 0
 strStep1Dir = 'D:/1/step1/'
 strStep2Dir = 'D:/1/step2/'
 for ParentPath, DirName, FileNames in os.walk(strStep1Dir):
  for i in FileNames:
   #图片文件路径信息
   strFullPath = os.path.join(ParentPath, i)
   imgBinImg = BinaryzationImg(strFullPath)
   imgClrImg = ClearNoise(imgBinImg)
   ImgList = GetCropImgs(imgClrImg)
   for img in ImgList:
    strImgName = "%04d%04d.png" % (g_Count, random.randint(0, 9999))
    strImgPath = os.path.join(strStep2Dir, strImgName)
    img.save(strImgPath)
    g_Count += 1

 print("OK!")

if __name__ == '__mian__':
 main()

三,手工分类

将第二步切割好的图片进行分类,体力活

python简单验证码识别的实现方法

四,利用SVM向量机建立模型

1.安装svm库

  下载libsvm库,并解压

  将库中的windows目录的路径添加到path环境变量中

将libsvm下的python文件夹中的svm.py和svmutil.py文件拷贝到你的python的路径中lib文件夹中

from svmutil import *

2.生成模型文件

  2.1.将分好类的图片信息进行提取,生成特征值

  2.2.输出向量数据

python简单验证码识别的实现方法

  2.3.根据数据输出SVM模型文件

python简单验证码识别的实现方法 

编写代码:_SVMDemo.py

#!/usr/bin/env python3

#SVM,验证码识别

import os
import sys
import random
import os.path
from PIL import Image, ImageEnhance, ImageFilter
from svmutil import *

##记录像素点的值,描述特征,采用遍历每个像素点统计黑色点的数量
def GetFeature(imgCropImg, nImgHeight, nImgWidth):
 PixelCountList = []
 for y in range(nImgHeight):
  CountX = 0
  for x in range(nImgWidth):
   if imgCropImg.getpixel((x, y)) == 0:
    CountX += 1
  PixelCountList.append(CountX)
 for x in range(nImgWidth):
  CountY = 0
  for y in range(nImgHeight):
   if imgCropImg.getpixel((x, y)) == 0:
    CountY += 1
  PixelCountList.append(CountY)
 return PixelCountList

##输出向量数据
def OutPutVectorData(strID, strMaterialDir, strOutPath):
 for ParentPath, DirNames, FileNames in os.walk(strMaterialDir):
  with open(strOutPath, 'a') as fpFea:
   for fp in FileNames:
    #图片文件路径信息
    strFullPath = os.path.join(ParentPath, fp)

    #打开图片
    imgOriImg = Image.open(strFullPath)

    #生成特征值
    FeatureList = GetFeature(imgOriImg, 15, 13)

    strFeature = strID + ' '
    nCount = 1
    for i in FeatureList:
     strFeature = '%s%d:%d ' % (strFeature, nCount, i)
     nCount += 1
    fpFea.write(strFeature + '\n')
    fpFea.flush()
  fpFea.close()

#训练SVM模型
def TrainSvmModel(strProblemPath, strModelPath):
 Y, X = svm_read_problem(strProblemPath)
 Model = svm_train(Y, X)
 svm_save_model(strModelPath, Model)

#SVM模型测试
def SvmModelTest(strProblemPath, strModelPath):
 TestY, TestX = svm_read_problem(strProblemPath)
 Model = svm_load_model(strModelPath)
 #返回识别结果
 pLabel, pAcc, pVal = svm_predict(TestY, TestX, Model)
 return pLabel


##输出测试向量数据
def OutPutTestVectorData(strID, strDir, strOutPath):
 fileList = []
 for parentPath, strDir, fileName in os.walk(strDir):
  fileList = fileName
 with open(strOutPath, 'a') as fpFea:
  for fp in fileList:
   #图片文件路径信息
   strFullPath = os.path.join(parentPath, fp)

   #打开图片
   imgOriImg = Image.open(strFullPath)

   #生成特征值
   FeatureList = GetFeature(imgOriImg, 15, 13)

   strFeature = strID + ' '
   nCount = 1
   for i in FeatureList:
    strFeature = '%s%d:%d ' % (strFeature, nCount, i)
    nCount += 1
   fpFea.write(strFeature + '\n')
   fpFea.flush()
  fpFea.close()


def main():
# 1.循环输出向量文件
 for i in range(0, 10):
  strID = '%d' % i
  OutPutVectorData(strID, 'D:/1/step3/' + strID, 'D:/1/step4/Vector.txt')

# 2.调用函数训练SVM模型
 TrainSvmModel('D:/1/step4/Vector.txt', 'D:/1/step5/Model.txt')
# 3.调用函数识别结果
 pLabel = SvmModelTest('D:/1/step6/Vector.txt', 'D:/1/step5/Model.txt')
 for i in pLabel:
  print('%d' % i)



if __name__ == '__main__':
 main()

五,测试

1.利用模型文件和向量文件进行测试验证码识别

    ##1.获取一张验证码图片

    ##2.对图片进行处理

    ##  2.1.二值化处理,增加对比度,锐化,增加亮度,滤镜,转为黑白,

    ##  2.2.去除噪点

    ##  2.3.切割图片

    ##3.生成向量文件

    ##4.再利用之前的模型文件进行识别测试

编写代码:_SVMTest.py

#!/usr/bin/env python3
#对一张验证码图片进行识别测试

##1.获取一张验证码图片
##2.对图片进行处理
## 2.1.二值化处理,增加对比度,锐化,增加亮度,滤镜,转为黑白,
## 2.2.去除噪点
## 2.3.切割图片
##3.生成向量文件
##4.再利用之前的模型文件进行识别测试

################
import _PicDealWith
import os
import random
import _SVMDemo


##测试
g_Count = 0
strDirPath = 'D:/1/test/'
strFileName = '001.png'
#1.图片文件路径信息
strFullPath = os.path.join(strDirPath, strFileName)
#2.对图片进行处理
#2.1二值化处理
imgBinImg = _PicDealWith.BinaryzationImg(strFullPath)
#2.2去除噪点
imgClrImg = _PicDealWith.ClearNoise(imgBinImg)
#2.3切割图片
ImgList = _PicDealWith.GetCropImgs(imgClrImg)
#2.3循环写入文件
for img in ImgList:
 strImgName = "%04d%04d.png" % (g_Count, random.randint(0, 9999))
 strImgPath = os.path.join(strDirPath, strImgName)
 img.save(strImgPath)
 g_Count += 1

print("OK")

os.remove(strFullPath)

#3.生成向量文件
_SVMDemo.OutPutTestVectorData('0', 'D:/1/test/', 'D:/1/test/Vector.txt')

#4.利用之前的模型文件进行识别测试
pLabel = _SVMDemo.SvmModelTest('D:/1/test/Vector.txt', 'D:/1/step5/Model.txt')
for i in pLabel:
 print('%d' % i, end = '')

效果图:

python简单验证码识别的实现方法

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对三水点靠木的支持。

Python 相关文章推荐
Python字符串匹配算法KMP实例
Jul 18 Python
Python和JavaScript间代码转换的4个工具
Feb 22 Python
Python正则表达式匹配中文用法示例
Jan 17 Python
python将.ppm格式图片转换成.jpg格式文件的方法
Oct 27 Python
python 用opencv调用训练好的模型进行识别的方法
Dec 07 Python
Python面向对象之类和对象实例详解
Dec 10 Python
Python实现查找二叉搜索树第k大的节点功能示例
Jan 24 Python
用python实现英文字母和相应序数转换的方法
Sep 18 Python
numpy.ndarray 实现对特定行或列取值
Dec 05 Python
解决Keras中CNN输入维度报错问题
Jun 29 Python
matplotlib.pyplot.plot()参数使用详解
Jul 28 Python
Python创建自己的加密货币的示例
Mar 01 Python
eclipse创建python项目步骤详解
May 10 #Python
Python实现字符型图片验证码识别完整过程详解
May 10 #Python
使用python PIL库实现简单验证码的去噪方法步骤
May 10 #Python
使用selenium模拟登录解决滑块验证问题的实现
May 10 #Python
python队列Queue的详解
May 10 #Python
使用Python的OpenCV模块识别滑动验证码的缺口(推荐)
May 10 #Python
详解python中的线程与线程池
May 10 #Python
You might like
php 转换字符串编码 iconv与mb_convert_encoding的区别说明
2011/11/10 PHP
PHP基于接口技术实现简单的多态应用完整实例
2017/04/26 PHP
PHPUnit + Laravel单元测试常用技能
2019/11/06 PHP
javascript实现的距离现在多长时间后的一个格式化的日期
2009/10/29 Javascript
等待指定时间后自动跳转或关闭当前页面的js代码
2013/07/09 Javascript
javascript和HTML5利用canvas构建猜牌游戏实现算法
2013/07/17 Javascript
div模拟滚动条效果示例代码
2013/10/16 Javascript
js window.onload 加载多个函数和追加函数详解
2014/01/08 Javascript
解决json日期格式问题的3种方法
2014/02/02 Javascript
自己用jQuery写了一个图片的马赛克消失效果
2014/05/04 Javascript
jQuery中get和post方法传值测试及注意事项
2014/08/08 Javascript
JQuery实现样式设置、追加、移除与切换的方法
2015/06/11 Javascript
深入解析JavaScript中函数的Currying柯里化
2016/03/19 Javascript
JS中setTimeout和setInterval的最大延时值详解
2017/02/13 Javascript
Vuex和前端缓存的整合策略详解
2017/05/09 Javascript
JavaScript转换数据库DateTime字段类型方法
2017/06/27 Javascript
Node.js使用gm拼装sprite图片
2017/07/04 Javascript
JavaScript内存泄漏的处理方式
2017/11/20 Javascript
vue中mint-ui的使用方法
2018/04/04 Javascript
jquery+php后台实现省市区联动功能示例
2019/05/23 jQuery
Vue使用screenfull实现全屏效果
2020/09/17 Javascript
Python文本相似性计算之编辑距离详解
2016/11/28 Python
Python中最大最小赋值小技巧(分享)
2017/12/23 Python
python实现二维数组的对角线遍历
2019/03/02 Python
python函数与方法的区别总结
2019/06/23 Python
python多维数组分位数的求取方式
2020/03/03 Python
关于keras中keras.layers.merge的用法说明
2020/05/23 Python
详解HTML5中div和section以及article的区别
2015/07/14 HTML / CSS
九州传奇上机题
2014/07/10 面试题
销售个人求职信范文
2014/04/28 职场文书
产品质量保证书
2014/04/29 职场文书
创意婚礼策划方案
2014/05/18 职场文书
经营理念口号
2014/06/21 职场文书
民事赔偿协议书
2014/11/02 职场文书
mybatis 解决从列名到属性名的自动映射失败问题
2021/06/30 Java/Android
SpringBoot+Redis实现布隆过滤器的示例代码
2022/03/17 Java/Android