BP神经网络原理及Python实现代码


Posted in Python onDecember 18, 2018

本文主要讲如何不依赖TenserFlow等高级API实现一个简单的神经网络来做分类,所有的代码都在下面;在构造的数据(通过程序构造)上做了验证,经过1个小时的训练分类的准确率可以达到97%。

完整的结构化代码见于:链接地址

先来说说原理

网络构造

BP神经网络原理及Python实现代码

上面是一个简单的三层网络;输入层包含节点X1 , X2;隐层包含H1,H2;输出层包含O1。
输入节点的数量要等于输入数据的变量数目。
隐层节点的数量通过经验来确定。
如果只是做分类,输出层一般一个节点就够了。

从输入到输出的过程

1.输入节点的输出等于输入,X1节点输入x1时,输出还是x1.
2. 隐层和输出层的输入I为上层输出的加权求和再加偏置,输出为f(I) , f为激活函数,可以取sigmoid。H1的输出为 sigmoid(w1x1 + w2x2 + b)

误差反向传播的过程

Python实现

构造测试数据

# -*- coding: utf-8 -*-
import numpy as np
from random import random as rdn

'''
说明:我们构造1000条数据,每条数据有三个属性(用a1 , a2 , a3表示)
a1 离散型 取值 1 到 10 , 均匀分布
a2 离散型 取值 1 到 10 , 均匀分布
a3 连续型 取值 1 到 100 , 且符合正态分布 
各属性之间独立。

共2个分类(0 , 1),属性值与类别之间的关系如下,
0 : a1 in [1 , 3] and a2 in [4 , 10] and a3 <= 50
1 : a1 in [1 , 3] and a2 in [4 , 10] and a3 > 50
0 : a1 in [1 , 3] and a2 in [1 , 3] and a3 > 30
1 : a1 in [1 , 3] and a2 in [1 , 3] and a3 <= 30
0 : a1 in [4 , 10] and a2 in [4 , 10] and a3 <= 50
1 : a1 in [4 , 10] and a2 in [4 , 10] and a3 > 50
0 : a1 in [4 , 10] and a2 in [1 , 3] and a3 > 30
1 : a1 in [4 , 10] and a2 in [1 , 3] and a3 <= 30
'''


def genData() :
 #为a3生成符合正态分布的数据
 a3_data = np.random.randn(1000) * 30 + 50
 data = []
 for i in range(1000) :
 #生成a1
 a1 = int(rdn()*10) + 1
 if a1 > 10 :
  a1 = 10
 #生成a2
 a2 = int(rdn()*10) + 1
 if a2 > 10 :
  a2 = 10
 #取a3
 a3 = a3_data[i] 
 #计算这条数据对应的类别
 c_id = 0
 if a1 <= 3 and a2 >= 4 and a3 <= 50 :
  c_id = 0 
 elif a1 <= 3 and a2 >= 4 and a3 > 50 :
  c_id = 1 
 elif a1 <= 3 and a2 < 4 and a3 > 30 :
  c_id = 0
 elif a1 <= 3 and a2 < 4 and a3 <= 30 :
  c_id = 1
 elif a1 > 3 and a2 >= 4 and a3 <= 50 :
  c_id = 0 
 elif a1 > 3 and a2 >= 4 and a3 > 50 :
  c_id = 1 
 elif a1 > 3 and a2 < 4 and a3 > 30 :
  c_id = 0
 elif a1 > 3 and a2 < 4 and a3 <= 30 :
  c_id = 1
 else :
  print('error')
 #拼合成字串
 str_line = str(i) + ',' + str(a1) + ',' + str(a2) + ',' + str(a3) + ',' + str(c_id)
 data.append(str_line)
 return '\n'.join(data)

激活函数

# -*- coding: utf-8 -*-
"""
Created on Sun Dec 2 14:49:31 2018

@author: congpeiqing
"""
import numpy as np

#sigmoid函数的导数为 f(x)*(1-f(x))
def sigmoid(x) :
 return 1/(1 + np.exp(-x))

网络实现

# -*- coding: utf-8 -*-
"""
Created on Sun Dec 2 14:49:31 2018

@author: congpeiqing
"""

from activation_funcs import sigmoid
from random import random

class InputNode(object) :
 def __init__(self , idx) :
 self.idx = idx
 self.output = None
  
 def setInput(self , value) :
 self.output = value
 
 def getOutput(self) :
 return self.output
 
 def refreshParas(self , p1 , p2) :
 pass
 
 
class Neurode(object) :
 def __init__(self , layer_name , idx , input_nodes , activation_func = None , powers = None , bias = None) :
 self.idx = idx 
 self.layer_name = layer_name
 self.input_nodes = input_nodes 
 if activation_func is not None :
  self.activation_func = activation_func
 else :
  #默认取 sigmoid
  self.activation_func = sigmoid
 if powers is not None :
  self.powers = powers
 else :
  self.powers = [random() for i in range(len(self.input_nodes))]
 if bias is not None :
  self.bias = bias
 else :
  self.bias = random()
 self.output = None
  
 def getOutput(self) :
 self.output = self.activation_func(sum(map(lambda x : x[0].getOutput()*x[1] , zip(self.input_nodes, self.powers))) + self.bias)
 return self.output
  
 def refreshParas(self , err , learn_rate) :
 err_add = self.output * (1 - self.output) * err 
 for i in range(len(self.input_nodes)) :
  #调用子节点
  self.input_nodes[i].refreshParas(self.powers[i] * err_add , learn_rate)
  #调节参数
  power_delta = learn_rate * err_add * self.input_nodes[i].output 
  self.powers[i] += power_delta
  bias_delta = learn_rate * err_add
  self.bias += bias_delta
 
 
class SimpleBP(object) :
 def __init__(self , input_node_num , hidden_layer_node_num , trainning_data , test_data) :
 self.input_node_num = input_node_num
 self.input_nodes = [InputNode(i) for i in range(input_node_num)]
 self.hidden_layer_nodes = [Neurode('H' , i , self.input_nodes) for i in range(hidden_layer_node_num)]
 self.output_node = Neurode('O' , 0 , self.hidden_layer_nodes)
 self.trainning_data = trainning_data
 self.test_data = test_data
 
 
 #逐条训练
 def trainByItem(self) :
 cnt = 0
 while True :
  cnt += 1
  learn_rate = 1.0/cnt
  sum_diff = 0.0
  #对于每一条训练数据进行一次训练过程
  for item in self.trainning_data :
  for i in range(self.input_node_num) :
   self.input_nodes[i].setInput(item[i])
  item_output = item[-1]
  nn_output = self.output_node.getOutput()
  #print('nn_output:' , nn_output)
  diff = (item_output-nn_output)
  sum_diff += abs(diff)
  self.output_node.refreshParas(diff , learn_rate)
  #print('refreshedParas')
  #结束条件 
  print(round(sum_diff / len(self.trainning_data) , 4))
  if sum_diff / len(self.trainning_data) < 0.1 :
  break
 
 def getAccuracy(self) :
 cnt = 0
 for item in self.test_data :
  for i in range(self.input_node_num) :
  self.input_nodes[i].setInput(item[i])
  item_output = item[-1]
  nn_output = self.output_node.getOutput()
  if (nn_output > 0.5 and item_output > 0.5) or (nn_output < 0.5 and item_output < 0.5) :
  cnt += 1
 return cnt/(len(self.test_data) + 0.0)

主调流程

# -*- coding: utf-8 -*-
"""
Created on Sun Dec 2 14:49:31 2018

@author: congpeiqing
"""
import os
from SimpleBP import SimpleBP
from GenData import genData

if not os.path.exists('data'):
 os.makedirs('data') 

#构造训练和测试数据
data_file = open('data/trainning_data.dat' , 'w')
data_file.write(genData())
data_file.close()

data_file = open('data/test_data.dat' , 'w')
data_file.write(genData())
data_file.close()


#文件格式:rec_id,attr1_value,attr2_value,attr3_value,class_id
#读取和解析训练数据
trainning_data_file = open('data/trainning_data.dat')
trainning_data = []
for line in trainning_data_file :
 line = line.strip()
 fld_list = line.split(',')
 trainning_data.append(tuple([float(field) for field in fld_list[1:]]))
trainning_data_file.close()

#读取和解析测试数据
test_data_file = open('data/test_data.dat')
test_data = []
for line in test_data_file :
 line = line.strip()
 fld_list = line.split(',')
 test_data.append(tuple([float(field) for field in fld_list[1:]]))
test_data_file.close()


#构造一个二分类网络 输入节点3个,隐层节点10个,输出节点一个
simple_bp = SimpleBP(3 , 10 , trainning_data , test_data)
#训练网络
simple_bp.trainByItem()
#测试分类准确率
print('Accuracy : ' , simple_bp.getAccuracy())
#训练时长比较长,准确率可以达到97%

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python3.2中的字符串函数学习总结
Apr 23 Python
Python多进程并发(multiprocessing)用法实例详解
Jun 02 Python
尝试用最短的Python代码来实现服务器和代理服务器
Jun 23 Python
利用python发送和接收邮件
Sep 27 Python
浅谈python中的实例方法、类方法和静态方法
Feb 17 Python
Python部署web开发程序的几种方法
May 05 Python
python+VTK环境搭建及第一个简单程序代码
Dec 13 Python
python pandas 对时间序列文件处理的实例
Jun 22 Python
Python正则表达式和re库知识点总结
Feb 11 Python
Python logging设置和logger解析
Aug 28 Python
Jupyter Notebook 安装配置与使用详解
Jan 06 Python
python垃圾回收机制原理分析
Apr 13 Python
python 执行文件时额外参数获取的实例
Dec 18 #Python
python实现基于信息增益的决策树归纳
Dec 18 #Python
Django实现一对多表模型的跨表查询方法
Dec 18 #Python
Python实现字典排序、按照list中字典的某个key排序的方法示例
Dec 18 #Python
python实现求特征选择的信息增益
Dec 18 #Python
python实现连续图文识别
Dec 18 #Python
Django ManyToManyField 跨越中间表查询的方法
Dec 18 #Python
You might like
迅速确定php多维数组的深度的方法
2014/01/07 PHP
phplot生成图片类用法详解
2015/01/06 PHP
js 无提示关闭浏览器页面的代码
2010/03/09 Javascript
js 字符串转化成数字的代码
2011/06/29 Javascript
JQuery遍历json数组的3种方法
2014/11/08 Javascript
jsonp跨域请求数据实现手机号码查询实例分析
2015/12/12 Javascript
js实现文字闪烁特效的方法
2015/12/17 Javascript
利用vue实现模态框组件
2016/12/19 Javascript
JavaScript定时器制作弹窗小广告
2017/02/05 Javascript
win系统下nodejs环境安装配置
2017/05/04 NodeJs
详解AngularJS 模块化
2017/06/14 Javascript
基于Vue2.X的路由和钩子函数详解
2018/02/09 Javascript
Vue2.0学习系列之项目上线的方法步骤(图文)
2018/09/25 Javascript
Vue从TodoList中学父子组件通信
2019/02/05 Javascript
nodejs中实现修改用户路由功能
2019/05/24 NodeJs
使用 Jest 和 Supertest 进行接口端点测试实例详解
2020/04/25 Javascript
Vue 禁用浏览器的前进后退操作
2020/09/04 Javascript
python使用tornado实现简单爬虫
2018/07/28 Python
用Python将mysql数据导出成json的方法
2018/08/21 Python
Python实现的读取/更改/写入xml文件操作示例
2018/08/30 Python
如何在django里上传csv文件并进行入库处理的方法
2019/01/02 Python
Win10下用Anaconda安装TensorFlow(图文教程)
2020/06/18 Python
python 爬虫网页登陆的简单实现
2020/11/30 Python
乌克兰网上服装店:Bolf.ua
2018/10/30 全球购物
精灵市场:Pixie Market
2019/06/18 全球购物
编写类String的构造函数、析构函数和赋值函数
2012/05/29 面试题
小学岗位竞聘方案
2014/01/22 职场文书
节水倡议书范文
2014/04/15 职场文书
询价采购方案
2014/06/09 职场文书
建筑工地标语
2014/06/18 职场文书
三年级学生评语大全
2014/12/26 职场文书
2016新年慰问信范文
2015/03/25 职场文书
2015年国庆节演讲稿范文
2015/07/30 职场文书
跟班学习心得体会(共6篇)
2016/01/23 职场文书
SpringBoot中获取profile的方法详解
2022/04/08 Java/Android
Spring中的@Transactional的工作原理
2022/06/05 Java/Android