BP神经网络原理及Python实现代码


Posted in Python onDecember 18, 2018

本文主要讲如何不依赖TenserFlow等高级API实现一个简单的神经网络来做分类,所有的代码都在下面;在构造的数据(通过程序构造)上做了验证,经过1个小时的训练分类的准确率可以达到97%。

完整的结构化代码见于:链接地址

先来说说原理

网络构造

BP神经网络原理及Python实现代码

上面是一个简单的三层网络;输入层包含节点X1 , X2;隐层包含H1,H2;输出层包含O1。
输入节点的数量要等于输入数据的变量数目。
隐层节点的数量通过经验来确定。
如果只是做分类,输出层一般一个节点就够了。

从输入到输出的过程

1.输入节点的输出等于输入,X1节点输入x1时,输出还是x1.
2. 隐层和输出层的输入I为上层输出的加权求和再加偏置,输出为f(I) , f为激活函数,可以取sigmoid。H1的输出为 sigmoid(w1x1 + w2x2 + b)

误差反向传播的过程

Python实现

构造测试数据

# -*- coding: utf-8 -*-
import numpy as np
from random import random as rdn

'''
说明:我们构造1000条数据,每条数据有三个属性(用a1 , a2 , a3表示)
a1 离散型 取值 1 到 10 , 均匀分布
a2 离散型 取值 1 到 10 , 均匀分布
a3 连续型 取值 1 到 100 , 且符合正态分布 
各属性之间独立。

共2个分类(0 , 1),属性值与类别之间的关系如下,
0 : a1 in [1 , 3] and a2 in [4 , 10] and a3 <= 50
1 : a1 in [1 , 3] and a2 in [4 , 10] and a3 > 50
0 : a1 in [1 , 3] and a2 in [1 , 3] and a3 > 30
1 : a1 in [1 , 3] and a2 in [1 , 3] and a3 <= 30
0 : a1 in [4 , 10] and a2 in [4 , 10] and a3 <= 50
1 : a1 in [4 , 10] and a2 in [4 , 10] and a3 > 50
0 : a1 in [4 , 10] and a2 in [1 , 3] and a3 > 30
1 : a1 in [4 , 10] and a2 in [1 , 3] and a3 <= 30
'''


def genData() :
 #为a3生成符合正态分布的数据
 a3_data = np.random.randn(1000) * 30 + 50
 data = []
 for i in range(1000) :
 #生成a1
 a1 = int(rdn()*10) + 1
 if a1 > 10 :
  a1 = 10
 #生成a2
 a2 = int(rdn()*10) + 1
 if a2 > 10 :
  a2 = 10
 #取a3
 a3 = a3_data[i] 
 #计算这条数据对应的类别
 c_id = 0
 if a1 <= 3 and a2 >= 4 and a3 <= 50 :
  c_id = 0 
 elif a1 <= 3 and a2 >= 4 and a3 > 50 :
  c_id = 1 
 elif a1 <= 3 and a2 < 4 and a3 > 30 :
  c_id = 0
 elif a1 <= 3 and a2 < 4 and a3 <= 30 :
  c_id = 1
 elif a1 > 3 and a2 >= 4 and a3 <= 50 :
  c_id = 0 
 elif a1 > 3 and a2 >= 4 and a3 > 50 :
  c_id = 1 
 elif a1 > 3 and a2 < 4 and a3 > 30 :
  c_id = 0
 elif a1 > 3 and a2 < 4 and a3 <= 30 :
  c_id = 1
 else :
  print('error')
 #拼合成字串
 str_line = str(i) + ',' + str(a1) + ',' + str(a2) + ',' + str(a3) + ',' + str(c_id)
 data.append(str_line)
 return '\n'.join(data)

激活函数

# -*- coding: utf-8 -*-
"""
Created on Sun Dec 2 14:49:31 2018

@author: congpeiqing
"""
import numpy as np

#sigmoid函数的导数为 f(x)*(1-f(x))
def sigmoid(x) :
 return 1/(1 + np.exp(-x))

网络实现

# -*- coding: utf-8 -*-
"""
Created on Sun Dec 2 14:49:31 2018

@author: congpeiqing
"""

from activation_funcs import sigmoid
from random import random

class InputNode(object) :
 def __init__(self , idx) :
 self.idx = idx
 self.output = None
  
 def setInput(self , value) :
 self.output = value
 
 def getOutput(self) :
 return self.output
 
 def refreshParas(self , p1 , p2) :
 pass
 
 
class Neurode(object) :
 def __init__(self , layer_name , idx , input_nodes , activation_func = None , powers = None , bias = None) :
 self.idx = idx 
 self.layer_name = layer_name
 self.input_nodes = input_nodes 
 if activation_func is not None :
  self.activation_func = activation_func
 else :
  #默认取 sigmoid
  self.activation_func = sigmoid
 if powers is not None :
  self.powers = powers
 else :
  self.powers = [random() for i in range(len(self.input_nodes))]
 if bias is not None :
  self.bias = bias
 else :
  self.bias = random()
 self.output = None
  
 def getOutput(self) :
 self.output = self.activation_func(sum(map(lambda x : x[0].getOutput()*x[1] , zip(self.input_nodes, self.powers))) + self.bias)
 return self.output
  
 def refreshParas(self , err , learn_rate) :
 err_add = self.output * (1 - self.output) * err 
 for i in range(len(self.input_nodes)) :
  #调用子节点
  self.input_nodes[i].refreshParas(self.powers[i] * err_add , learn_rate)
  #调节参数
  power_delta = learn_rate * err_add * self.input_nodes[i].output 
  self.powers[i] += power_delta
  bias_delta = learn_rate * err_add
  self.bias += bias_delta
 
 
class SimpleBP(object) :
 def __init__(self , input_node_num , hidden_layer_node_num , trainning_data , test_data) :
 self.input_node_num = input_node_num
 self.input_nodes = [InputNode(i) for i in range(input_node_num)]
 self.hidden_layer_nodes = [Neurode('H' , i , self.input_nodes) for i in range(hidden_layer_node_num)]
 self.output_node = Neurode('O' , 0 , self.hidden_layer_nodes)
 self.trainning_data = trainning_data
 self.test_data = test_data
 
 
 #逐条训练
 def trainByItem(self) :
 cnt = 0
 while True :
  cnt += 1
  learn_rate = 1.0/cnt
  sum_diff = 0.0
  #对于每一条训练数据进行一次训练过程
  for item in self.trainning_data :
  for i in range(self.input_node_num) :
   self.input_nodes[i].setInput(item[i])
  item_output = item[-1]
  nn_output = self.output_node.getOutput()
  #print('nn_output:' , nn_output)
  diff = (item_output-nn_output)
  sum_diff += abs(diff)
  self.output_node.refreshParas(diff , learn_rate)
  #print('refreshedParas')
  #结束条件 
  print(round(sum_diff / len(self.trainning_data) , 4))
  if sum_diff / len(self.trainning_data) < 0.1 :
  break
 
 def getAccuracy(self) :
 cnt = 0
 for item in self.test_data :
  for i in range(self.input_node_num) :
  self.input_nodes[i].setInput(item[i])
  item_output = item[-1]
  nn_output = self.output_node.getOutput()
  if (nn_output > 0.5 and item_output > 0.5) or (nn_output < 0.5 and item_output < 0.5) :
  cnt += 1
 return cnt/(len(self.test_data) + 0.0)

主调流程

# -*- coding: utf-8 -*-
"""
Created on Sun Dec 2 14:49:31 2018

@author: congpeiqing
"""
import os
from SimpleBP import SimpleBP
from GenData import genData

if not os.path.exists('data'):
 os.makedirs('data') 

#构造训练和测试数据
data_file = open('data/trainning_data.dat' , 'w')
data_file.write(genData())
data_file.close()

data_file = open('data/test_data.dat' , 'w')
data_file.write(genData())
data_file.close()


#文件格式:rec_id,attr1_value,attr2_value,attr3_value,class_id
#读取和解析训练数据
trainning_data_file = open('data/trainning_data.dat')
trainning_data = []
for line in trainning_data_file :
 line = line.strip()
 fld_list = line.split(',')
 trainning_data.append(tuple([float(field) for field in fld_list[1:]]))
trainning_data_file.close()

#读取和解析测试数据
test_data_file = open('data/test_data.dat')
test_data = []
for line in test_data_file :
 line = line.strip()
 fld_list = line.split(',')
 test_data.append(tuple([float(field) for field in fld_list[1:]]))
test_data_file.close()


#构造一个二分类网络 输入节点3个,隐层节点10个,输出节点一个
simple_bp = SimpleBP(3 , 10 , trainning_data , test_data)
#训练网络
simple_bp.trainByItem()
#测试分类准确率
print('Accuracy : ' , simple_bp.getAccuracy())
#训练时长比较长,准确率可以达到97%

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python原始字符串(raw strings)用法实例
Oct 13 Python
Python实现二叉树的常见遍历操作总结【7种方法】
Mar 06 Python
Python OS模块实例详解
Apr 15 Python
python实现大量图片重命名
Mar 23 Python
Python之关于类变量的两种赋值区别详解
Mar 12 Python
Django 解决上传文件时,request.FILES为空的问题
May 20 Python
解决python运行启动报错问题
Jun 01 Python
Python实现打包成库供别的模块调用
Jul 13 Python
Python创建临时文件和文件夹
Aug 05 Python
互斥锁解决 Python 中多线程共享全局变量的问题(推荐)
Sep 28 Python
OpenCV-Python实现轮廓的特征值
Jun 09 Python
Python可视化学习之seaborn调色盘
Feb 24 Python
python 执行文件时额外参数获取的实例
Dec 18 #Python
python实现基于信息增益的决策树归纳
Dec 18 #Python
Django实现一对多表模型的跨表查询方法
Dec 18 #Python
Python实现字典排序、按照list中字典的某个key排序的方法示例
Dec 18 #Python
python实现求特征选择的信息增益
Dec 18 #Python
python实现连续图文识别
Dec 18 #Python
Django ManyToManyField 跨越中间表查询的方法
Dec 18 #Python
You might like
服务器web工具 php环境下
2010/12/29 PHP
php一个找二层目录的小东东
2012/08/02 PHP
php 判断是否是中文/英文/数字示例代码
2013/09/30 PHP
PHP中实现crontab代码分享
2015/03/26 PHP
多广告投放代码 推荐
2006/11/13 Javascript
不用写JS也能使用EXTJS视频演示
2008/12/29 Javascript
Jquery 学习笔记(一)
2009/10/13 Javascript
Javascript this 的一些学习总结
2012/08/31 Javascript
实测jquery data()如何存值
2013/08/18 Javascript
jQuery内置的AJAX功能和JSON的使用实例
2014/07/27 Javascript
JS如何实现在页面上快速定位(锚点跳转问题)
2017/08/14 Javascript
详解JavaScript中的六种错误类型
2017/09/21 Javascript
layui实现二维码弹窗、并下载到本地的方法
2019/09/25 Javascript
浅析TypeScript 命名空间
2020/03/19 Javascript
一个基于flask的web应用诞生 记录用户账户登录状态(6)
2017/04/11 Python
Python实现将HTML转换成doc格式文件的方法示例
2017/11/20 Python
每天迁移MySQL历史数据到历史库Python脚本
2018/04/13 Python
python使用docx模块读写docx文件的方法与docx模块常用方法详解
2020/02/17 Python
python如何从键盘获取输入实例
2020/06/18 Python
HTML5 和小程序实现拍照图片旋转、压缩和上传功能
2018/10/08 HTML / CSS
南威尔士家居商店:Leekes
2016/10/25 全球购物
联想加拿大官方网站:Lenovo Canada
2018/04/05 全球购物
哥伦比亚加拿大官网:Columbia Sportswear Canada
2020/09/07 全球购物
外科实习自我鉴定
2013/10/06 职场文书
给民警的表扬信
2014/01/08 职场文书
《童趣》教学反思
2014/02/19 职场文书
银行优秀员工事迹材料
2014/05/29 职场文书
建设单位项目负责人任命书
2014/06/06 职场文书
行政求职信
2014/07/04 职场文书
出生公证书
2015/01/23 职场文书
个人求职意向书
2015/05/11 职场文书
2015年惩防体系建设工作总结
2015/05/22 职场文书
2016年元旦主持词
2015/07/06 职场文书
个人合作协议范本
2015/08/06 职场文书
Golang中异常处理机制详解
2021/06/08 Golang
Vue-Element-Admin集成自己的接口实现登录跳转
2021/06/23 Vue.js