BP神经网络原理及Python实现代码


Posted in Python onDecember 18, 2018

本文主要讲如何不依赖TenserFlow等高级API实现一个简单的神经网络来做分类,所有的代码都在下面;在构造的数据(通过程序构造)上做了验证,经过1个小时的训练分类的准确率可以达到97%。

完整的结构化代码见于:链接地址

先来说说原理

网络构造

BP神经网络原理及Python实现代码

上面是一个简单的三层网络;输入层包含节点X1 , X2;隐层包含H1,H2;输出层包含O1。
输入节点的数量要等于输入数据的变量数目。
隐层节点的数量通过经验来确定。
如果只是做分类,输出层一般一个节点就够了。

从输入到输出的过程

1.输入节点的输出等于输入,X1节点输入x1时,输出还是x1.
2. 隐层和输出层的输入I为上层输出的加权求和再加偏置,输出为f(I) , f为激活函数,可以取sigmoid。H1的输出为 sigmoid(w1x1 + w2x2 + b)

误差反向传播的过程

Python实现

构造测试数据

# -*- coding: utf-8 -*-
import numpy as np
from random import random as rdn

'''
说明:我们构造1000条数据,每条数据有三个属性(用a1 , a2 , a3表示)
a1 离散型 取值 1 到 10 , 均匀分布
a2 离散型 取值 1 到 10 , 均匀分布
a3 连续型 取值 1 到 100 , 且符合正态分布 
各属性之间独立。

共2个分类(0 , 1),属性值与类别之间的关系如下,
0 : a1 in [1 , 3] and a2 in [4 , 10] and a3 <= 50
1 : a1 in [1 , 3] and a2 in [4 , 10] and a3 > 50
0 : a1 in [1 , 3] and a2 in [1 , 3] and a3 > 30
1 : a1 in [1 , 3] and a2 in [1 , 3] and a3 <= 30
0 : a1 in [4 , 10] and a2 in [4 , 10] and a3 <= 50
1 : a1 in [4 , 10] and a2 in [4 , 10] and a3 > 50
0 : a1 in [4 , 10] and a2 in [1 , 3] and a3 > 30
1 : a1 in [4 , 10] and a2 in [1 , 3] and a3 <= 30
'''


def genData() :
 #为a3生成符合正态分布的数据
 a3_data = np.random.randn(1000) * 30 + 50
 data = []
 for i in range(1000) :
 #生成a1
 a1 = int(rdn()*10) + 1
 if a1 > 10 :
  a1 = 10
 #生成a2
 a2 = int(rdn()*10) + 1
 if a2 > 10 :
  a2 = 10
 #取a3
 a3 = a3_data[i] 
 #计算这条数据对应的类别
 c_id = 0
 if a1 <= 3 and a2 >= 4 and a3 <= 50 :
  c_id = 0 
 elif a1 <= 3 and a2 >= 4 and a3 > 50 :
  c_id = 1 
 elif a1 <= 3 and a2 < 4 and a3 > 30 :
  c_id = 0
 elif a1 <= 3 and a2 < 4 and a3 <= 30 :
  c_id = 1
 elif a1 > 3 and a2 >= 4 and a3 <= 50 :
  c_id = 0 
 elif a1 > 3 and a2 >= 4 and a3 > 50 :
  c_id = 1 
 elif a1 > 3 and a2 < 4 and a3 > 30 :
  c_id = 0
 elif a1 > 3 and a2 < 4 and a3 <= 30 :
  c_id = 1
 else :
  print('error')
 #拼合成字串
 str_line = str(i) + ',' + str(a1) + ',' + str(a2) + ',' + str(a3) + ',' + str(c_id)
 data.append(str_line)
 return '\n'.join(data)

激活函数

# -*- coding: utf-8 -*-
"""
Created on Sun Dec 2 14:49:31 2018

@author: congpeiqing
"""
import numpy as np

#sigmoid函数的导数为 f(x)*(1-f(x))
def sigmoid(x) :
 return 1/(1 + np.exp(-x))

网络实现

# -*- coding: utf-8 -*-
"""
Created on Sun Dec 2 14:49:31 2018

@author: congpeiqing
"""

from activation_funcs import sigmoid
from random import random

class InputNode(object) :
 def __init__(self , idx) :
 self.idx = idx
 self.output = None
  
 def setInput(self , value) :
 self.output = value
 
 def getOutput(self) :
 return self.output
 
 def refreshParas(self , p1 , p2) :
 pass
 
 
class Neurode(object) :
 def __init__(self , layer_name , idx , input_nodes , activation_func = None , powers = None , bias = None) :
 self.idx = idx 
 self.layer_name = layer_name
 self.input_nodes = input_nodes 
 if activation_func is not None :
  self.activation_func = activation_func
 else :
  #默认取 sigmoid
  self.activation_func = sigmoid
 if powers is not None :
  self.powers = powers
 else :
  self.powers = [random() for i in range(len(self.input_nodes))]
 if bias is not None :
  self.bias = bias
 else :
  self.bias = random()
 self.output = None
  
 def getOutput(self) :
 self.output = self.activation_func(sum(map(lambda x : x[0].getOutput()*x[1] , zip(self.input_nodes, self.powers))) + self.bias)
 return self.output
  
 def refreshParas(self , err , learn_rate) :
 err_add = self.output * (1 - self.output) * err 
 for i in range(len(self.input_nodes)) :
  #调用子节点
  self.input_nodes[i].refreshParas(self.powers[i] * err_add , learn_rate)
  #调节参数
  power_delta = learn_rate * err_add * self.input_nodes[i].output 
  self.powers[i] += power_delta
  bias_delta = learn_rate * err_add
  self.bias += bias_delta
 
 
class SimpleBP(object) :
 def __init__(self , input_node_num , hidden_layer_node_num , trainning_data , test_data) :
 self.input_node_num = input_node_num
 self.input_nodes = [InputNode(i) for i in range(input_node_num)]
 self.hidden_layer_nodes = [Neurode('H' , i , self.input_nodes) for i in range(hidden_layer_node_num)]
 self.output_node = Neurode('O' , 0 , self.hidden_layer_nodes)
 self.trainning_data = trainning_data
 self.test_data = test_data
 
 
 #逐条训练
 def trainByItem(self) :
 cnt = 0
 while True :
  cnt += 1
  learn_rate = 1.0/cnt
  sum_diff = 0.0
  #对于每一条训练数据进行一次训练过程
  for item in self.trainning_data :
  for i in range(self.input_node_num) :
   self.input_nodes[i].setInput(item[i])
  item_output = item[-1]
  nn_output = self.output_node.getOutput()
  #print('nn_output:' , nn_output)
  diff = (item_output-nn_output)
  sum_diff += abs(diff)
  self.output_node.refreshParas(diff , learn_rate)
  #print('refreshedParas')
  #结束条件 
  print(round(sum_diff / len(self.trainning_data) , 4))
  if sum_diff / len(self.trainning_data) < 0.1 :
  break
 
 def getAccuracy(self) :
 cnt = 0
 for item in self.test_data :
  for i in range(self.input_node_num) :
  self.input_nodes[i].setInput(item[i])
  item_output = item[-1]
  nn_output = self.output_node.getOutput()
  if (nn_output > 0.5 and item_output > 0.5) or (nn_output < 0.5 and item_output < 0.5) :
  cnt += 1
 return cnt/(len(self.test_data) + 0.0)

主调流程

# -*- coding: utf-8 -*-
"""
Created on Sun Dec 2 14:49:31 2018

@author: congpeiqing
"""
import os
from SimpleBP import SimpleBP
from GenData import genData

if not os.path.exists('data'):
 os.makedirs('data') 

#构造训练和测试数据
data_file = open('data/trainning_data.dat' , 'w')
data_file.write(genData())
data_file.close()

data_file = open('data/test_data.dat' , 'w')
data_file.write(genData())
data_file.close()


#文件格式:rec_id,attr1_value,attr2_value,attr3_value,class_id
#读取和解析训练数据
trainning_data_file = open('data/trainning_data.dat')
trainning_data = []
for line in trainning_data_file :
 line = line.strip()
 fld_list = line.split(',')
 trainning_data.append(tuple([float(field) for field in fld_list[1:]]))
trainning_data_file.close()

#读取和解析测试数据
test_data_file = open('data/test_data.dat')
test_data = []
for line in test_data_file :
 line = line.strip()
 fld_list = line.split(',')
 test_data.append(tuple([float(field) for field in fld_list[1:]]))
test_data_file.close()


#构造一个二分类网络 输入节点3个,隐层节点10个,输出节点一个
simple_bp = SimpleBP(3 , 10 , trainning_data , test_data)
#训练网络
simple_bp.trainByItem()
#测试分类准确率
print('Accuracy : ' , simple_bp.getAccuracy())
#训练时长比较长,准确率可以达到97%

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用paramiko模块实现ssh远程登陆上传文件并执行
Jan 27 Python
Python yield 使用浅析
May 28 Python
学习python 之编写简单乘法运算题
Feb 27 Python
python相似模块用例
Mar 04 Python
python中模块查找的原理与方法详解
Aug 11 Python
pytorch + visdom 处理简单分类问题的示例
Jun 04 Python
对web.py设置favicon.ico的方法详解
Dec 04 Python
python机器人运动范围问题的解答
Apr 29 Python
numpy linalg模块的具体使用方法
May 26 Python
利用pyuic5将ui文件转换为py文件的方法
Jun 19 Python
python基于gevent实现并发下载器代码实例
Nov 01 Python
python 利用百度API识别图片文字(多线程版)
Dec 14 Python
python 执行文件时额外参数获取的实例
Dec 18 #Python
python实现基于信息增益的决策树归纳
Dec 18 #Python
Django实现一对多表模型的跨表查询方法
Dec 18 #Python
Python实现字典排序、按照list中字典的某个key排序的方法示例
Dec 18 #Python
python实现求特征选择的信息增益
Dec 18 #Python
python实现连续图文识别
Dec 18 #Python
Django ManyToManyField 跨越中间表查询的方法
Dec 18 #Python
You might like
在apache下限制每个虚拟主机的并发数!!!!
2006/10/09 PHP
PHP5+UTF8多文件上传类
2008/10/17 PHP
如何使用Strace调试工具
2013/06/03 PHP
php实现查看邮件是否已被阅读的方法
2013/12/03 PHP
php 创建以UNIX时间戳命名的文件夹(示例代码)
2014/03/08 PHP
使用Composer安装Yii框架的方法
2016/03/15 PHP
Laravel5.1 框架Request请求操作常见用法实例分析
2020/01/04 PHP
Javascript中的数学函数集合
2007/05/08 Javascript
判断复选框是否被选中的两种方法
2014/06/04 Javascript
JavaScript弹出窗口方法汇总
2014/08/12 Javascript
Vue.js 表单校验插件
2016/08/14 Javascript
使用Ajax与服务器(JSON)通信实例
2016/11/04 Javascript
JS封装通过className获取元素的函数示例
2016/12/20 Javascript
JS实现简单的二元方程计算器功能示例
2017/01/03 Javascript
jQuery实现ajax无刷新分页页码控件
2017/02/28 Javascript
利用node.js爬取指定排名网站的JS引用库详解
2017/07/25 Javascript
jQuery zTree 异步加载添加子节点重复问题
2017/11/29 jQuery
详解关于element级联选择器数据回显问题
2019/02/20 Javascript
详解JavaScript 作用域
2020/07/14 Javascript
Python对象转JSON字符串的方法
2016/04/27 Python
Python cookbook(数据结构与算法)从字典中提取子集的方法示例
2018/03/22 Python
tensorflow学习笔记之简单的神经网络训练和测试
2018/04/15 Python
Python实现合并同一个文件夹下所有PDF文件的方法示例
2018/04/28 Python
Python基础之函数的定义与使用示例
2019/03/23 Python
python实现Excel文件转换为TXT文件
2019/04/28 Python
python如何解析配置文件并应用到项目中
2019/06/27 Python
python使用ctypes调用扩展模块的实例方法
2020/01/28 Python
Pytorch使用PIL和Numpy将单张图片转为Pytorch张量方式
2020/05/25 Python
django 将自带的数据库sqlite3改成mysql实例
2020/07/09 Python
财务会计实习报告体会
2013/12/20 职场文书
管理信息系学生的自我评价
2014/01/11 职场文书
高中军训感言500字
2014/02/24 职场文书
社区母亲节活动记录
2014/03/06 职场文书
竞选班干部演讲稿300字
2014/08/20 职场文书
MySQL 慢查询日志深入理解
2021/04/22 MySQL
python中pymysql包操作数据库方法
2022/04/19 Python