python实现基于信息增益的决策树归纳


Posted in Python onDecember 18, 2018

本文实例为大家分享了基于信息增益的决策树归纳的Python实现代码,供大家参考,具体内容如下

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
from copy import copy
 
#加载训练数据
#文件格式:属性标号,是否连续【yes|no】,属性说明
attribute_file_dest = 'F:\\bayes_categorize\\attribute.dat'
attribute_file = open(attribute_file_dest)
 
#文件格式:rec_id,attr1_value,attr2_value,...,attrn_value,class_id
trainning_data_file_dest = 'F:\\bayes_categorize\\trainning_data.dat'
trainning_data_file = open(trainning_data_file_dest)
 
#文件格式:class_id,class_desc
class_desc_file_dest = 'F:\\bayes_categorize\\class_desc.dat'
class_desc_file = open(class_desc_file_dest)
 
 
root_attr_dict = {}
for line in attribute_file :
  line = line.strip()
  fld_list = line.split(',')
  root_attr_dict[int(fld_list[0])] = tuple(fld_list[1:])
 
class_dict = {}
for line in class_desc_file :
  line = line.strip()
  fld_list = line.split(',')
  class_dict[int(fld_list[0])] = fld_list[1]
  
trainning_data_dict = {}
class_member_set_dict = {}
for line in trainning_data_file :
  line = line.strip()
  fld_list = line.split(',')
  rec_id = int(fld_list[0])
  a1 = int(fld_list[1])
  a2 = int(fld_list[2])
  a3 = float(fld_list[3])
  c_id = int(fld_list[4])
  
  if c_id not in class_member_set_dict :
    class_member_set_dict[c_id] = set()
  class_member_set_dict[c_id].add(rec_id)
  trainning_data_dict[rec_id] = (a1 , a2 , a3 , c_id)
  
attribute_file.close()
class_desc_file.close()
trainning_data_file.close()
 
class_possibility_dict = {}
for c_id in class_member_set_dict :
  class_possibility_dict[c_id] = (len(class_member_set_dict[c_id]) + 0.0)/len(trainning_data_dict)  
 
#等待分类的数据
data_to_classify_file_dest = 'F:\\bayes_categorize\\trainning_data_new.dat'
data_to_classify_file = open(data_to_classify_file_dest)
data_to_classify_dict = {}
for line in data_to_classify_file :
  line = line.strip()
  fld_list = line.split(',')
  rec_id = int(fld_list[0])
  a1 = int(fld_list[1])
  a2 = int(fld_list[2])
  a3 = float(fld_list[3])
  c_id = int(fld_list[4])
  data_to_classify_dict[rec_id] = (a1 , a2 , a3 , c_id)
data_to_classify_file.close()
 
 
 
 
'''
决策树的表达
结点的需求:
1、指示出是哪一种分区 一共3种 一是离散穷举 二是连续有分裂点 三是离散有判别集合 零是叶子结点
2、保存分类所需信息
3、子结点列表
每个结点用Tuple类型表示
元素一是整形,取值123 分别对应两种分裂类型
元素二是集合类型 对于1保存所有的离散值 对于2保存分裂点 对于3保存判别集合 对于0保存分类结果类标号
元素三是dict key对于1来说是某个的离散值 对于23来说只有12两种 对于2来说1代表小于等于分裂点
对于3来说1代表属于判别集合
'''
 
  
#对于一个成员列表,计算其熵
#公式为 Info_D = - sum(pi * log2 (pi)) pi为一个元素属于Ci的概率,用|Ci|/|D|计算 ,对所有分类求和
def get_entropy( member_list ) :
  #成员总数
  mem_cnt = len(member_list)
  #首先找出member中所包含的分类
  class_dict = {}
  for mem_id in member_list :
    c_id = trainning_data_dict[mem_id][3]
    if c_id not in class_dict :
      class_dict[c_id] = set()
    class_dict[c_id].add(mem_id)
  
  tmp_sum = 0.0
  for c_id in class_dict :
    pi = ( len(class_dict[c_id]) + 0.0 ) / mem_cnt
    tmp_sum += pi * mlab.log2(pi)
  tmp_sum = -tmp_sum
  return tmp_sum
    
 
def attribute_selection_method( member_list , attribute_dict ) :
  #先计算原始的熵
  info_D = get_entropy(member_list)
  
  max_info_Gain = 0.0
  attr_get = 0
  split_point = 0.0
  for attr_id in attribute_dict :
    #对于每一个属性计算划分后的熵
    #信息增益等于原始的熵减去划分后的熵
    info_D_new = 0
    #如果是连续属性
    if attribute_dict[attr_id][0] == 'yes' :
      #先得到memberlist中此属性的取值序列,把序列中每一对相邻项的中值作为划分点计算熵
      #找出其中最小的,作为此连续属性的划分点
      value_list = []
      for mem_id in member_list :
        value_list.append(trainning_data_dict[mem_id][attr_id - 1])
      
      #获取相邻元素的中值序列
      mid_value_list = []
      value_list.sort()
      #print value_list
      last_value = None
      for value in value_list :
        if value == last_value :
          continue
        if last_value is not None :
          mid_value_list.append((last_value+value)/2)
        last_value = value
      #print mid_value_list
      #对于中值序列做循环
      #计算以此值做为划分点的熵
      #总的熵等于两个划分的熵乘以两个划分的比重
      min_info = 1000000000.0
      total_mens = len(member_list) + 0.0
      for mid_value in mid_value_list :
        #小于mid_value的mem
        less_list = []
        #大于
        more_list = []
        for tmp_mem_id in member_list :
          if trainning_data_dict[tmp_mem_id][attr_id - 1] <= mid_value :
            less_list.append(tmp_mem_id)
          else :
            more_list.append(tmp_mem_id)
        sum_info = len(less_list)/total_mens * get_entropy(less_list) \
        + len(more_list)/total_mens * get_entropy(more_list)
        
        if sum_info < min_info :
          min_info = sum_info
          split_point = mid_value
          
      info_D_new = min_info
    #如果是离散属性
    else :
      #计算划分后的熵
      #采用循环累加的方式
      attr_value_member_dict = {} #键为attribute value , 值为memberlist
      for tmp_mem_id in member_list :
        attr_value = trainning_data_dict[tmp_mem_id][attr_id - 1]
        if attr_value not in attr_value_member_dict :
          attr_value_member_dict[attr_value] = []
        attr_value_member_dict[attr_value].append(tmp_mem_id)
      #将每个离散值的熵乘以比重加到这上面
      total_mens = len(member_list) + 0.0
      sum_info = 0.0
      for a_value in attr_value_member_dict :
        sum_info += len(attr_value_member_dict[a_value])/total_mens \
        * get_entropy(attr_value_member_dict[a_value])
      
      info_D_new = sum_info
    
    info_Gain = info_D - info_D_new
    if info_Gain > max_info_Gain :
      max_info_Gain = info_Gain
      attr_get = attr_id
  
  #如果是离散的
  #print 'attr_get ' + str(attr_get)
  if attribute_dict[attr_get][0] == 'no' :
    return (1 , attr_get , split_point)
  else :  
    return (2 , attr_get , split_point)
  #第三类先不考虑
 
def get_decision_tree(father_node , key , member_list , attr_dict ) :
  #最终的结果是新建一个结点,并且添加到father_node的sub_node_dict,对key为键
  #检查memberlist 如果都是同类的,则生成一个叶子结点,set里面保存类标号
  class_set = set()
  for mem_id in member_list :
    class_set.add(trainning_data_dict[mem_id][3])
  if len(class_set) == 1 :
    father_node[2][key] = (0 , (1 , class_set) , {} )
    return
  
  #检查attribute_list,如果为空,产生叶子结点,类标号为memberlist中多数元素的类标号
  #如果几个类的成员等量,则打印提示,并且全部添加到set里面
  if not attr_dict :
    class_cnt_dict = {}
    for mem_id in member_list :
      c_id = trainning_data_dict[mem_id][3]
      if c_id not in class_cnt_dict :
        class_cnt_dict[c_id] = 1
      else :
        class_cnt_dict[c_id] += 1
        
    class_set = set()
    max_cnt = 0
    for c_id in class_cnt_dict :
      if class_cnt_dict[c_id] > max_cnt :
        max_cnt = class_cnt_dict[c_id]
        class_set.clear()
        class_set.add(c_id)
      elif class_cnt_dict[c_id] == max_cnt :
        class_set.add(c_id)
    
    if len(class_set) > 1 :
      print 'more than one class !'
    
    father_node[2][key] = (0 , (1 , class_set ) , {} )
    return
  
  #找出最好的分区方案 , 暂不考虑第三种划分方法
  #比较所有离散属性和所有连续属性的所有中值点划分的信息增益
  split_criterion = attribute_selection_method(member_list , attr_dict)
  #print split_criterion
  selected_plan_id = split_criterion[0]
  selected_attr_id = split_criterion[1]
  
  #如果采用的是离散属性做为分区方案,删除这个属性
  new_attr_dict = copy(attr_dict)
  if attr_dict[selected_attr_id][0] == 'no' :
    del new_attr_dict[selected_attr_id]
  
  #建立一个结点new_node,father_node[2][key] = new_node
  #然后对new node的每一个key , sub_member_list,
  #调用 get_decision_tree(new_node , new_key , sub_member_list , new_attribute_dict)
  #实现递归
  ele2 = ( selected_attr_id , set() )
  #如果是1 , ele2保存所有离散值
  if selected_plan_id == 1 :
    for mem_id in member_list :
      ele2[1].add(trainning_data_dict[mem_id][selected_attr_id - 1])
  #如果是2,ele2保存分裂点
  elif selected_plan_id == 2 :
    ele2[1].add(split_criterion[2])
  #如果是3则保存判别集合,先不管
  else :
    print 'not completed'
    pass
    
  new_node = ( selected_plan_id , ele2 , {} )
  father_node[2][key] = new_node
  
  #生成KEY,并递归调用
  if selected_plan_id == 1 :
    #每个attr_value是一个key
    attr_value_member_dict = {}
    for mem_id in member_list :
      attr_value = trainning_data_dict[mem_id][selected_attr_id - 1 ]
      if attr_value not in attr_value_member_dict :
        attr_value_member_dict[attr_value] = []
      attr_value_member_dict[attr_value].append(mem_id)
    for attr_value in attr_value_member_dict :
      get_decision_tree(new_node , attr_value , attr_value_member_dict[attr_value] , new_attr_dict)
    pass
  elif selected_plan_id == 2 :
    #key 只有12 , 小于等于分裂点的是1 , 大于的是2
    less_list = []
    more_list = []
    for mem_id in member_list :
      attr_value = trainning_data_dict[mem_id][selected_attr_id - 1 ]
      if attr_value <= split_criterion[2] :
        less_list.append(mem_id)
      else :
        more_list.append(mem_id)
    #if len(less_list) != 0 :
    get_decision_tree(new_node , 1 , less_list , new_attr_dict)
    #if len(more_list) != 0 :
    get_decision_tree(new_node , 2 , more_list , new_attr_dict)
    pass
  #如果是3则保存判别集合,先不管
  else :
    print 'not completed'
    pass
  
def get_class_sub(node , tp ) :
  #
  attr_id = node[1][0]
  plan_id = node[0]
  key = 0
  if plan_id == 0 :
    return node[1][1]
  elif plan_id == 1 :
    key = tp[attr_id - 1]
  elif plan_id == 2 :
    split_point = tuple(node[1][1])[0]
    attr_value = tp[attr_id - 1]
    if attr_value <= split_point :
      key = 1
    else :
      key = 2
  else :
    print 'error'
    return set()
    
  return get_class_sub(node[2][key] , tp )
 
def get_class(r_node , tp) :
  #tp为一组属性值
  if r_node[0] != -1 :
    print 'error'
    return set()
  
  if 1 in r_node[2] :
    return get_class_sub(r_node[2][1] , tp)
  else :
    print 'error'
    return set()
  
  
if __name__ == '__main__' :
  root_node = ( -1 , set() , {} )
  mem_list = trainning_data_dict.keys()
  get_decision_tree(root_node , 1 , mem_list , root_attr_dict )
 
  #测试分类器的准确率
  diff_cnt = 0
  for mem_id in data_to_classify_dict :
    c_id = get_class(root_node , data_to_classify_dict[mem_id][0:3])
    if tuple(c_id)[0] != data_to_classify_dict[mem_id][3] :
      print tuple(c_id)[0]
      print data_to_classify_dict[mem_id][3]
      print 'different'
      diff_cnt += 1
  print diff_cnt

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
基于Python的身份证号码自动生成程序
Aug 15 Python
python2.7的编码问题与解决方法
Oct 04 Python
Python爬虫天气预报实例详解(小白入门)
Jan 24 Python
python2.7安装图文教程
Mar 13 Python
Python实现图片转字符画的代码实例
Feb 22 Python
python程序控制NAO机器人行走
Apr 29 Python
创建Django项目图文实例详解
Jun 06 Python
Django处理Ajax发送的Get请求代码详解
Jul 29 Python
哈工大自然语言处理工具箱之ltp在windows10下的安装使用教程
May 07 Python
使用Keras 实现查看model weights .h5 文件的内容
Jun 09 Python
opencv 图像滤波(均值,方框,高斯,中值)
Jul 08 Python
Python OpenCV快速入门教程
Apr 17 Python
Django实现一对多表模型的跨表查询方法
Dec 18 #Python
Python实现字典排序、按照list中字典的某个key排序的方法示例
Dec 18 #Python
python实现求特征选择的信息增益
Dec 18 #Python
python实现连续图文识别
Dec 18 #Python
Django ManyToManyField 跨越中间表查询的方法
Dec 18 #Python
Python列表list排列组合操作示例
Dec 18 #Python
python实现二维插值的三维显示
Dec 17 #Python
You might like
PHP全概率运算函数(优化版) Webgame开发必备
2011/07/04 PHP
php文件服务实现虚拟挂载其他目录示例
2014/04/17 PHP
单台服务器的PHP进程之间实现共享内存的方法
2014/06/13 PHP
实例讲解PHP中使用命名空间
2019/01/27 PHP
PHP工厂模式、单例模式与注册树模式实例详解
2019/06/03 PHP
JS 判断undefined的实现代码
2009/11/26 Javascript
JavaScript 学习初步 入门教程
2010/03/25 Javascript
JavaScript立即执行函数的三种不同写法
2014/09/05 Javascript
JavaScript定时器和优化的取消定时器方法
2015/07/03 Javascript
Bootstrap+jfinal退出系统弹出确认框的实现方法
2016/05/30 Javascript
微信支付 JS API支付接口详解
2016/07/11 Javascript
vue登录注册及token验证实现代码
2017/12/14 Javascript
使用vue + less 实现简单换肤功能的示例
2018/02/21 Javascript
浅谈ECMAScript 中的Array类型
2019/06/10 Javascript
利用d3.js制作连线动画图与编辑器的方法实例
2019/09/05 Javascript
webpack+vue.js构建前端工程化的详细教程
2020/05/10 Javascript
Python简单遍历字典及删除元素的方法
2016/09/18 Python
对numpy中数组元素的统一赋值实例
2018/04/04 Python
python图像和办公文档处理总结
2019/05/28 Python
Python语言进阶知识点总结
2019/05/28 Python
Python列表对象实现原理详解
2019/07/01 Python
500行代码使用python写个微信小游戏飞机大战游戏
2019/10/16 Python
django实现用户注册实例讲解
2019/10/30 Python
tensorflow 实现打印pb模型的所有节点
2020/01/23 Python
Django import export实现数据库导入导出方式
2020/04/03 Python
Python使用itcaht库实现微信自动收发消息功能
2020/07/13 Python
Unix里面如何在后台运行程序
2016/10/14 面试题
音乐专业应届生教师求职信
2013/11/04 职场文书
领导证婚人证婚词
2014/01/13 职场文书
投资合作协议书范本
2014/04/17 职场文书
设计顾问服务计划书
2014/05/04 职场文书
感恩教师节演讲稿
2014/09/03 职场文书
实习单位证明范例
2014/11/17 职场文书
工作迟到检讨书范文
2015/05/06 职场文书
MySQL8.0 Undo Tablespace管理详解
2022/06/16 MySQL
git中cherry-pick命令的使用教程
2022/06/25 Servers