python实现基于信息增益的决策树归纳


Posted in Python onDecember 18, 2018

本文实例为大家分享了基于信息增益的决策树归纳的Python实现代码,供大家参考,具体内容如下

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
from copy import copy
 
#加载训练数据
#文件格式:属性标号,是否连续【yes|no】,属性说明
attribute_file_dest = 'F:\\bayes_categorize\\attribute.dat'
attribute_file = open(attribute_file_dest)
 
#文件格式:rec_id,attr1_value,attr2_value,...,attrn_value,class_id
trainning_data_file_dest = 'F:\\bayes_categorize\\trainning_data.dat'
trainning_data_file = open(trainning_data_file_dest)
 
#文件格式:class_id,class_desc
class_desc_file_dest = 'F:\\bayes_categorize\\class_desc.dat'
class_desc_file = open(class_desc_file_dest)
 
 
root_attr_dict = {}
for line in attribute_file :
  line = line.strip()
  fld_list = line.split(',')
  root_attr_dict[int(fld_list[0])] = tuple(fld_list[1:])
 
class_dict = {}
for line in class_desc_file :
  line = line.strip()
  fld_list = line.split(',')
  class_dict[int(fld_list[0])] = fld_list[1]
  
trainning_data_dict = {}
class_member_set_dict = {}
for line in trainning_data_file :
  line = line.strip()
  fld_list = line.split(',')
  rec_id = int(fld_list[0])
  a1 = int(fld_list[1])
  a2 = int(fld_list[2])
  a3 = float(fld_list[3])
  c_id = int(fld_list[4])
  
  if c_id not in class_member_set_dict :
    class_member_set_dict[c_id] = set()
  class_member_set_dict[c_id].add(rec_id)
  trainning_data_dict[rec_id] = (a1 , a2 , a3 , c_id)
  
attribute_file.close()
class_desc_file.close()
trainning_data_file.close()
 
class_possibility_dict = {}
for c_id in class_member_set_dict :
  class_possibility_dict[c_id] = (len(class_member_set_dict[c_id]) + 0.0)/len(trainning_data_dict)  
 
#等待分类的数据
data_to_classify_file_dest = 'F:\\bayes_categorize\\trainning_data_new.dat'
data_to_classify_file = open(data_to_classify_file_dest)
data_to_classify_dict = {}
for line in data_to_classify_file :
  line = line.strip()
  fld_list = line.split(',')
  rec_id = int(fld_list[0])
  a1 = int(fld_list[1])
  a2 = int(fld_list[2])
  a3 = float(fld_list[3])
  c_id = int(fld_list[4])
  data_to_classify_dict[rec_id] = (a1 , a2 , a3 , c_id)
data_to_classify_file.close()
 
 
 
 
'''
决策树的表达
结点的需求:
1、指示出是哪一种分区 一共3种 一是离散穷举 二是连续有分裂点 三是离散有判别集合 零是叶子结点
2、保存分类所需信息
3、子结点列表
每个结点用Tuple类型表示
元素一是整形,取值123 分别对应两种分裂类型
元素二是集合类型 对于1保存所有的离散值 对于2保存分裂点 对于3保存判别集合 对于0保存分类结果类标号
元素三是dict key对于1来说是某个的离散值 对于23来说只有12两种 对于2来说1代表小于等于分裂点
对于3来说1代表属于判别集合
'''
 
  
#对于一个成员列表,计算其熵
#公式为 Info_D = - sum(pi * log2 (pi)) pi为一个元素属于Ci的概率,用|Ci|/|D|计算 ,对所有分类求和
def get_entropy( member_list ) :
  #成员总数
  mem_cnt = len(member_list)
  #首先找出member中所包含的分类
  class_dict = {}
  for mem_id in member_list :
    c_id = trainning_data_dict[mem_id][3]
    if c_id not in class_dict :
      class_dict[c_id] = set()
    class_dict[c_id].add(mem_id)
  
  tmp_sum = 0.0
  for c_id in class_dict :
    pi = ( len(class_dict[c_id]) + 0.0 ) / mem_cnt
    tmp_sum += pi * mlab.log2(pi)
  tmp_sum = -tmp_sum
  return tmp_sum
    
 
def attribute_selection_method( member_list , attribute_dict ) :
  #先计算原始的熵
  info_D = get_entropy(member_list)
  
  max_info_Gain = 0.0
  attr_get = 0
  split_point = 0.0
  for attr_id in attribute_dict :
    #对于每一个属性计算划分后的熵
    #信息增益等于原始的熵减去划分后的熵
    info_D_new = 0
    #如果是连续属性
    if attribute_dict[attr_id][0] == 'yes' :
      #先得到memberlist中此属性的取值序列,把序列中每一对相邻项的中值作为划分点计算熵
      #找出其中最小的,作为此连续属性的划分点
      value_list = []
      for mem_id in member_list :
        value_list.append(trainning_data_dict[mem_id][attr_id - 1])
      
      #获取相邻元素的中值序列
      mid_value_list = []
      value_list.sort()
      #print value_list
      last_value = None
      for value in value_list :
        if value == last_value :
          continue
        if last_value is not None :
          mid_value_list.append((last_value+value)/2)
        last_value = value
      #print mid_value_list
      #对于中值序列做循环
      #计算以此值做为划分点的熵
      #总的熵等于两个划分的熵乘以两个划分的比重
      min_info = 1000000000.0
      total_mens = len(member_list) + 0.0
      for mid_value in mid_value_list :
        #小于mid_value的mem
        less_list = []
        #大于
        more_list = []
        for tmp_mem_id in member_list :
          if trainning_data_dict[tmp_mem_id][attr_id - 1] <= mid_value :
            less_list.append(tmp_mem_id)
          else :
            more_list.append(tmp_mem_id)
        sum_info = len(less_list)/total_mens * get_entropy(less_list) \
        + len(more_list)/total_mens * get_entropy(more_list)
        
        if sum_info < min_info :
          min_info = sum_info
          split_point = mid_value
          
      info_D_new = min_info
    #如果是离散属性
    else :
      #计算划分后的熵
      #采用循环累加的方式
      attr_value_member_dict = {} #键为attribute value , 值为memberlist
      for tmp_mem_id in member_list :
        attr_value = trainning_data_dict[tmp_mem_id][attr_id - 1]
        if attr_value not in attr_value_member_dict :
          attr_value_member_dict[attr_value] = []
        attr_value_member_dict[attr_value].append(tmp_mem_id)
      #将每个离散值的熵乘以比重加到这上面
      total_mens = len(member_list) + 0.0
      sum_info = 0.0
      for a_value in attr_value_member_dict :
        sum_info += len(attr_value_member_dict[a_value])/total_mens \
        * get_entropy(attr_value_member_dict[a_value])
      
      info_D_new = sum_info
    
    info_Gain = info_D - info_D_new
    if info_Gain > max_info_Gain :
      max_info_Gain = info_Gain
      attr_get = attr_id
  
  #如果是离散的
  #print 'attr_get ' + str(attr_get)
  if attribute_dict[attr_get][0] == 'no' :
    return (1 , attr_get , split_point)
  else :  
    return (2 , attr_get , split_point)
  #第三类先不考虑
 
def get_decision_tree(father_node , key , member_list , attr_dict ) :
  #最终的结果是新建一个结点,并且添加到father_node的sub_node_dict,对key为键
  #检查memberlist 如果都是同类的,则生成一个叶子结点,set里面保存类标号
  class_set = set()
  for mem_id in member_list :
    class_set.add(trainning_data_dict[mem_id][3])
  if len(class_set) == 1 :
    father_node[2][key] = (0 , (1 , class_set) , {} )
    return
  
  #检查attribute_list,如果为空,产生叶子结点,类标号为memberlist中多数元素的类标号
  #如果几个类的成员等量,则打印提示,并且全部添加到set里面
  if not attr_dict :
    class_cnt_dict = {}
    for mem_id in member_list :
      c_id = trainning_data_dict[mem_id][3]
      if c_id not in class_cnt_dict :
        class_cnt_dict[c_id] = 1
      else :
        class_cnt_dict[c_id] += 1
        
    class_set = set()
    max_cnt = 0
    for c_id in class_cnt_dict :
      if class_cnt_dict[c_id] > max_cnt :
        max_cnt = class_cnt_dict[c_id]
        class_set.clear()
        class_set.add(c_id)
      elif class_cnt_dict[c_id] == max_cnt :
        class_set.add(c_id)
    
    if len(class_set) > 1 :
      print 'more than one class !'
    
    father_node[2][key] = (0 , (1 , class_set ) , {} )
    return
  
  #找出最好的分区方案 , 暂不考虑第三种划分方法
  #比较所有离散属性和所有连续属性的所有中值点划分的信息增益
  split_criterion = attribute_selection_method(member_list , attr_dict)
  #print split_criterion
  selected_plan_id = split_criterion[0]
  selected_attr_id = split_criterion[1]
  
  #如果采用的是离散属性做为分区方案,删除这个属性
  new_attr_dict = copy(attr_dict)
  if attr_dict[selected_attr_id][0] == 'no' :
    del new_attr_dict[selected_attr_id]
  
  #建立一个结点new_node,father_node[2][key] = new_node
  #然后对new node的每一个key , sub_member_list,
  #调用 get_decision_tree(new_node , new_key , sub_member_list , new_attribute_dict)
  #实现递归
  ele2 = ( selected_attr_id , set() )
  #如果是1 , ele2保存所有离散值
  if selected_plan_id == 1 :
    for mem_id in member_list :
      ele2[1].add(trainning_data_dict[mem_id][selected_attr_id - 1])
  #如果是2,ele2保存分裂点
  elif selected_plan_id == 2 :
    ele2[1].add(split_criterion[2])
  #如果是3则保存判别集合,先不管
  else :
    print 'not completed'
    pass
    
  new_node = ( selected_plan_id , ele2 , {} )
  father_node[2][key] = new_node
  
  #生成KEY,并递归调用
  if selected_plan_id == 1 :
    #每个attr_value是一个key
    attr_value_member_dict = {}
    for mem_id in member_list :
      attr_value = trainning_data_dict[mem_id][selected_attr_id - 1 ]
      if attr_value not in attr_value_member_dict :
        attr_value_member_dict[attr_value] = []
      attr_value_member_dict[attr_value].append(mem_id)
    for attr_value in attr_value_member_dict :
      get_decision_tree(new_node , attr_value , attr_value_member_dict[attr_value] , new_attr_dict)
    pass
  elif selected_plan_id == 2 :
    #key 只有12 , 小于等于分裂点的是1 , 大于的是2
    less_list = []
    more_list = []
    for mem_id in member_list :
      attr_value = trainning_data_dict[mem_id][selected_attr_id - 1 ]
      if attr_value <= split_criterion[2] :
        less_list.append(mem_id)
      else :
        more_list.append(mem_id)
    #if len(less_list) != 0 :
    get_decision_tree(new_node , 1 , less_list , new_attr_dict)
    #if len(more_list) != 0 :
    get_decision_tree(new_node , 2 , more_list , new_attr_dict)
    pass
  #如果是3则保存判别集合,先不管
  else :
    print 'not completed'
    pass
  
def get_class_sub(node , tp ) :
  #
  attr_id = node[1][0]
  plan_id = node[0]
  key = 0
  if plan_id == 0 :
    return node[1][1]
  elif plan_id == 1 :
    key = tp[attr_id - 1]
  elif plan_id == 2 :
    split_point = tuple(node[1][1])[0]
    attr_value = tp[attr_id - 1]
    if attr_value <= split_point :
      key = 1
    else :
      key = 2
  else :
    print 'error'
    return set()
    
  return get_class_sub(node[2][key] , tp )
 
def get_class(r_node , tp) :
  #tp为一组属性值
  if r_node[0] != -1 :
    print 'error'
    return set()
  
  if 1 in r_node[2] :
    return get_class_sub(r_node[2][1] , tp)
  else :
    print 'error'
    return set()
  
  
if __name__ == '__main__' :
  root_node = ( -1 , set() , {} )
  mem_list = trainning_data_dict.keys()
  get_decision_tree(root_node , 1 , mem_list , root_attr_dict )
 
  #测试分类器的准确率
  diff_cnt = 0
  for mem_id in data_to_classify_dict :
    c_id = get_class(root_node , data_to_classify_dict[mem_id][0:3])
    if tuple(c_id)[0] != data_to_classify_dict[mem_id][3] :
      print tuple(c_id)[0]
      print data_to_classify_dict[mem_id][3]
      print 'different'
      diff_cnt += 1
  print diff_cnt

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python条件和循环的使用方法
Nov 01 Python
python根据路径导入模块的方法
Sep 30 Python
Python第三方库xlrd/xlwt的安装与读写Excel表格
Jan 21 Python
在django中图片上传的格式校验及大小方法
Jul 28 Python
Python基于requests库爬取网站信息
Mar 02 Python
python3 正则表达式基础廖雪峰
Mar 25 Python
django实现模板中的字符串文字和自动转义
Mar 31 Python
基于Python编写一个计算器程序,实现简单的加减乘除和取余二元运算
Aug 05 Python
Python headers请求头如何实现快速添加
Nov 03 Python
聊聊pytorch测试的时候为何要加上model.eval()
May 23 Python
总结Python连接CS2000的详细步骤
Jun 23 Python
python turtle绘图命令及案例
Nov 23 Python
Django实现一对多表模型的跨表查询方法
Dec 18 #Python
Python实现字典排序、按照list中字典的某个key排序的方法示例
Dec 18 #Python
python实现求特征选择的信息增益
Dec 18 #Python
python实现连续图文识别
Dec 18 #Python
Django ManyToManyField 跨越中间表查询的方法
Dec 18 #Python
Python列表list排列组合操作示例
Dec 18 #Python
python实现二维插值的三维显示
Dec 17 #Python
You might like
PHP以mysqli方式连接类完整代码实例
2014/07/15 PHP
PHP常用技巧汇总
2016/03/04 PHP
支付宝支付开发――当面付条码支付和扫码支付实例
2016/11/04 PHP
php验证码生成器
2017/05/24 PHP
Laravel监听数据库访问,打印SQL的例子
2019/10/24 PHP
Javascript 原型和继承(Prototypes and Inheritance)
2009/04/01 Javascript
js中的值类型和引用类型小结 文字说明与实例
2010/12/12 Javascript
JS 进度条效果实现代码整理
2011/05/21 Javascript
JavaScript词法作用域与调用对象深入理解
2012/11/29 Javascript
JS实现不规则TAB选项卡效果代码
2015/09/16 Javascript
如何根据百度地图计算出两地之间的驾驶距离(两种语言js和C#)
2015/10/29 Javascript
实例解析ES6 Proxy使用场景介绍
2018/01/08 Javascript
vue toggle做一个点击切换class(实例讲解)
2018/03/13 Javascript
微信小程序实现登录注册tab切换效果
2020/12/29 Javascript
javascript对HTML字符转义与反转义
2018/12/13 Javascript
如何检查一个对象是否为空
2019/04/11 Javascript
javascript+Canvas实现画板功能
2020/06/23 Javascript
Threejs实现滴滴官网首页地球动画功能
2020/07/13 Javascript
通过实例解析jQ Ajax操作相关原理
2020/09/23 Javascript
vue 实现element-ui中的加载中状态
2020/11/11 Javascript
Python中死锁的形成示例及死锁情况的防止
2016/06/14 Python
详解MySQL数据类型int(M)中M的含义
2016/11/20 Python
python 中的int()函数怎么用
2017/10/17 Python
Python数据可视化编程通过Matplotlib创建散点图代码示例
2017/12/09 Python
Python设计模式之中介模式简单示例
2018/01/09 Python
使用python写的opencv实时监测和解析二维码和条形码
2019/08/14 Python
python操作ini类型配置文件的实例教程
2020/10/30 Python
瑞士隐形眼镜和护理产品网上商店:Linsenklick
2019/10/21 全球购物
我有一个char * 型指针正巧指向一些int 型变量, 我想跳过它们。 为什么如下的代码((int *)p)++; 不行?
2013/05/09 面试题
什么是事务?为什么需要事务?
2012/01/09 面试题
上班玩手机检讨书
2014/02/17 职场文书
光学与应用专业毕业生求职信
2014/09/01 职场文书
2014第二批党的群众路线教育实践活动对照检查材料思想汇报
2014/09/18 职场文书
民主生活会汇报材料
2014/12/15 职场文书
未来,这5大方向都很适合创业
2019/07/22 职场文书
写给医护人员的一封感谢信
2019/09/16 职场文书