python实现基于信息增益的决策树归纳


Posted in Python onDecember 18, 2018

本文实例为大家分享了基于信息增益的决策树归纳的Python实现代码,供大家参考,具体内容如下

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
from copy import copy
 
#加载训练数据
#文件格式:属性标号,是否连续【yes|no】,属性说明
attribute_file_dest = 'F:\\bayes_categorize\\attribute.dat'
attribute_file = open(attribute_file_dest)
 
#文件格式:rec_id,attr1_value,attr2_value,...,attrn_value,class_id
trainning_data_file_dest = 'F:\\bayes_categorize\\trainning_data.dat'
trainning_data_file = open(trainning_data_file_dest)
 
#文件格式:class_id,class_desc
class_desc_file_dest = 'F:\\bayes_categorize\\class_desc.dat'
class_desc_file = open(class_desc_file_dest)
 
 
root_attr_dict = {}
for line in attribute_file :
  line = line.strip()
  fld_list = line.split(',')
  root_attr_dict[int(fld_list[0])] = tuple(fld_list[1:])
 
class_dict = {}
for line in class_desc_file :
  line = line.strip()
  fld_list = line.split(',')
  class_dict[int(fld_list[0])] = fld_list[1]
  
trainning_data_dict = {}
class_member_set_dict = {}
for line in trainning_data_file :
  line = line.strip()
  fld_list = line.split(',')
  rec_id = int(fld_list[0])
  a1 = int(fld_list[1])
  a2 = int(fld_list[2])
  a3 = float(fld_list[3])
  c_id = int(fld_list[4])
  
  if c_id not in class_member_set_dict :
    class_member_set_dict[c_id] = set()
  class_member_set_dict[c_id].add(rec_id)
  trainning_data_dict[rec_id] = (a1 , a2 , a3 , c_id)
  
attribute_file.close()
class_desc_file.close()
trainning_data_file.close()
 
class_possibility_dict = {}
for c_id in class_member_set_dict :
  class_possibility_dict[c_id] = (len(class_member_set_dict[c_id]) + 0.0)/len(trainning_data_dict)  
 
#等待分类的数据
data_to_classify_file_dest = 'F:\\bayes_categorize\\trainning_data_new.dat'
data_to_classify_file = open(data_to_classify_file_dest)
data_to_classify_dict = {}
for line in data_to_classify_file :
  line = line.strip()
  fld_list = line.split(',')
  rec_id = int(fld_list[0])
  a1 = int(fld_list[1])
  a2 = int(fld_list[2])
  a3 = float(fld_list[3])
  c_id = int(fld_list[4])
  data_to_classify_dict[rec_id] = (a1 , a2 , a3 , c_id)
data_to_classify_file.close()
 
 
 
 
'''
决策树的表达
结点的需求:
1、指示出是哪一种分区 一共3种 一是离散穷举 二是连续有分裂点 三是离散有判别集合 零是叶子结点
2、保存分类所需信息
3、子结点列表
每个结点用Tuple类型表示
元素一是整形,取值123 分别对应两种分裂类型
元素二是集合类型 对于1保存所有的离散值 对于2保存分裂点 对于3保存判别集合 对于0保存分类结果类标号
元素三是dict key对于1来说是某个的离散值 对于23来说只有12两种 对于2来说1代表小于等于分裂点
对于3来说1代表属于判别集合
'''
 
  
#对于一个成员列表,计算其熵
#公式为 Info_D = - sum(pi * log2 (pi)) pi为一个元素属于Ci的概率,用|Ci|/|D|计算 ,对所有分类求和
def get_entropy( member_list ) :
  #成员总数
  mem_cnt = len(member_list)
  #首先找出member中所包含的分类
  class_dict = {}
  for mem_id in member_list :
    c_id = trainning_data_dict[mem_id][3]
    if c_id not in class_dict :
      class_dict[c_id] = set()
    class_dict[c_id].add(mem_id)
  
  tmp_sum = 0.0
  for c_id in class_dict :
    pi = ( len(class_dict[c_id]) + 0.0 ) / mem_cnt
    tmp_sum += pi * mlab.log2(pi)
  tmp_sum = -tmp_sum
  return tmp_sum
    
 
def attribute_selection_method( member_list , attribute_dict ) :
  #先计算原始的熵
  info_D = get_entropy(member_list)
  
  max_info_Gain = 0.0
  attr_get = 0
  split_point = 0.0
  for attr_id in attribute_dict :
    #对于每一个属性计算划分后的熵
    #信息增益等于原始的熵减去划分后的熵
    info_D_new = 0
    #如果是连续属性
    if attribute_dict[attr_id][0] == 'yes' :
      #先得到memberlist中此属性的取值序列,把序列中每一对相邻项的中值作为划分点计算熵
      #找出其中最小的,作为此连续属性的划分点
      value_list = []
      for mem_id in member_list :
        value_list.append(trainning_data_dict[mem_id][attr_id - 1])
      
      #获取相邻元素的中值序列
      mid_value_list = []
      value_list.sort()
      #print value_list
      last_value = None
      for value in value_list :
        if value == last_value :
          continue
        if last_value is not None :
          mid_value_list.append((last_value+value)/2)
        last_value = value
      #print mid_value_list
      #对于中值序列做循环
      #计算以此值做为划分点的熵
      #总的熵等于两个划分的熵乘以两个划分的比重
      min_info = 1000000000.0
      total_mens = len(member_list) + 0.0
      for mid_value in mid_value_list :
        #小于mid_value的mem
        less_list = []
        #大于
        more_list = []
        for tmp_mem_id in member_list :
          if trainning_data_dict[tmp_mem_id][attr_id - 1] <= mid_value :
            less_list.append(tmp_mem_id)
          else :
            more_list.append(tmp_mem_id)
        sum_info = len(less_list)/total_mens * get_entropy(less_list) \
        + len(more_list)/total_mens * get_entropy(more_list)
        
        if sum_info < min_info :
          min_info = sum_info
          split_point = mid_value
          
      info_D_new = min_info
    #如果是离散属性
    else :
      #计算划分后的熵
      #采用循环累加的方式
      attr_value_member_dict = {} #键为attribute value , 值为memberlist
      for tmp_mem_id in member_list :
        attr_value = trainning_data_dict[tmp_mem_id][attr_id - 1]
        if attr_value not in attr_value_member_dict :
          attr_value_member_dict[attr_value] = []
        attr_value_member_dict[attr_value].append(tmp_mem_id)
      #将每个离散值的熵乘以比重加到这上面
      total_mens = len(member_list) + 0.0
      sum_info = 0.0
      for a_value in attr_value_member_dict :
        sum_info += len(attr_value_member_dict[a_value])/total_mens \
        * get_entropy(attr_value_member_dict[a_value])
      
      info_D_new = sum_info
    
    info_Gain = info_D - info_D_new
    if info_Gain > max_info_Gain :
      max_info_Gain = info_Gain
      attr_get = attr_id
  
  #如果是离散的
  #print 'attr_get ' + str(attr_get)
  if attribute_dict[attr_get][0] == 'no' :
    return (1 , attr_get , split_point)
  else :  
    return (2 , attr_get , split_point)
  #第三类先不考虑
 
def get_decision_tree(father_node , key , member_list , attr_dict ) :
  #最终的结果是新建一个结点,并且添加到father_node的sub_node_dict,对key为键
  #检查memberlist 如果都是同类的,则生成一个叶子结点,set里面保存类标号
  class_set = set()
  for mem_id in member_list :
    class_set.add(trainning_data_dict[mem_id][3])
  if len(class_set) == 1 :
    father_node[2][key] = (0 , (1 , class_set) , {} )
    return
  
  #检查attribute_list,如果为空,产生叶子结点,类标号为memberlist中多数元素的类标号
  #如果几个类的成员等量,则打印提示,并且全部添加到set里面
  if not attr_dict :
    class_cnt_dict = {}
    for mem_id in member_list :
      c_id = trainning_data_dict[mem_id][3]
      if c_id not in class_cnt_dict :
        class_cnt_dict[c_id] = 1
      else :
        class_cnt_dict[c_id] += 1
        
    class_set = set()
    max_cnt = 0
    for c_id in class_cnt_dict :
      if class_cnt_dict[c_id] > max_cnt :
        max_cnt = class_cnt_dict[c_id]
        class_set.clear()
        class_set.add(c_id)
      elif class_cnt_dict[c_id] == max_cnt :
        class_set.add(c_id)
    
    if len(class_set) > 1 :
      print 'more than one class !'
    
    father_node[2][key] = (0 , (1 , class_set ) , {} )
    return
  
  #找出最好的分区方案 , 暂不考虑第三种划分方法
  #比较所有离散属性和所有连续属性的所有中值点划分的信息增益
  split_criterion = attribute_selection_method(member_list , attr_dict)
  #print split_criterion
  selected_plan_id = split_criterion[0]
  selected_attr_id = split_criterion[1]
  
  #如果采用的是离散属性做为分区方案,删除这个属性
  new_attr_dict = copy(attr_dict)
  if attr_dict[selected_attr_id][0] == 'no' :
    del new_attr_dict[selected_attr_id]
  
  #建立一个结点new_node,father_node[2][key] = new_node
  #然后对new node的每一个key , sub_member_list,
  #调用 get_decision_tree(new_node , new_key , sub_member_list , new_attribute_dict)
  #实现递归
  ele2 = ( selected_attr_id , set() )
  #如果是1 , ele2保存所有离散值
  if selected_plan_id == 1 :
    for mem_id in member_list :
      ele2[1].add(trainning_data_dict[mem_id][selected_attr_id - 1])
  #如果是2,ele2保存分裂点
  elif selected_plan_id == 2 :
    ele2[1].add(split_criterion[2])
  #如果是3则保存判别集合,先不管
  else :
    print 'not completed'
    pass
    
  new_node = ( selected_plan_id , ele2 , {} )
  father_node[2][key] = new_node
  
  #生成KEY,并递归调用
  if selected_plan_id == 1 :
    #每个attr_value是一个key
    attr_value_member_dict = {}
    for mem_id in member_list :
      attr_value = trainning_data_dict[mem_id][selected_attr_id - 1 ]
      if attr_value not in attr_value_member_dict :
        attr_value_member_dict[attr_value] = []
      attr_value_member_dict[attr_value].append(mem_id)
    for attr_value in attr_value_member_dict :
      get_decision_tree(new_node , attr_value , attr_value_member_dict[attr_value] , new_attr_dict)
    pass
  elif selected_plan_id == 2 :
    #key 只有12 , 小于等于分裂点的是1 , 大于的是2
    less_list = []
    more_list = []
    for mem_id in member_list :
      attr_value = trainning_data_dict[mem_id][selected_attr_id - 1 ]
      if attr_value <= split_criterion[2] :
        less_list.append(mem_id)
      else :
        more_list.append(mem_id)
    #if len(less_list) != 0 :
    get_decision_tree(new_node , 1 , less_list , new_attr_dict)
    #if len(more_list) != 0 :
    get_decision_tree(new_node , 2 , more_list , new_attr_dict)
    pass
  #如果是3则保存判别集合,先不管
  else :
    print 'not completed'
    pass
  
def get_class_sub(node , tp ) :
  #
  attr_id = node[1][0]
  plan_id = node[0]
  key = 0
  if plan_id == 0 :
    return node[1][1]
  elif plan_id == 1 :
    key = tp[attr_id - 1]
  elif plan_id == 2 :
    split_point = tuple(node[1][1])[0]
    attr_value = tp[attr_id - 1]
    if attr_value <= split_point :
      key = 1
    else :
      key = 2
  else :
    print 'error'
    return set()
    
  return get_class_sub(node[2][key] , tp )
 
def get_class(r_node , tp) :
  #tp为一组属性值
  if r_node[0] != -1 :
    print 'error'
    return set()
  
  if 1 in r_node[2] :
    return get_class_sub(r_node[2][1] , tp)
  else :
    print 'error'
    return set()
  
  
if __name__ == '__main__' :
  root_node = ( -1 , set() , {} )
  mem_list = trainning_data_dict.keys()
  get_decision_tree(root_node , 1 , mem_list , root_attr_dict )
 
  #测试分类器的准确率
  diff_cnt = 0
  for mem_id in data_to_classify_dict :
    c_id = get_class(root_node , data_to_classify_dict[mem_id][0:3])
    if tuple(c_id)[0] != data_to_classify_dict[mem_id][3] :
      print tuple(c_id)[0]
      print data_to_classify_dict[mem_id][3]
      print 'different'
      diff_cnt += 1
  print diff_cnt

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python下载文件时显示下载进度的方法
Apr 02 Python
python学习之编写查询ip程序
Feb 27 Python
python中闭包Closure函数作为返回值的方法示例
Dec 17 Python
Python获取系统所有进程PID及进程名称的方法示例
May 24 Python
python 通过麦克风录音 生成wav文件的方法
Jan 09 Python
python实现创建新列表和新字典,并使元素及键值对全部变成小写
Jan 15 Python
Python3实现的旋转矩阵图像算法示例
Apr 03 Python
浅谈Pytorch中的torch.gather函数的含义
Aug 18 Python
详解利用python识别图片中的条码(pyzbar)及条码图片矫正和增强
Nov 17 Python
利用python制作拼图小游戏的全过程
Dec 04 Python
解决Python中的modf()函数取小数部分不准确问题
May 28 Python
python的html标准库
Apr 29 Python
Django实现一对多表模型的跨表查询方法
Dec 18 #Python
Python实现字典排序、按照list中字典的某个key排序的方法示例
Dec 18 #Python
python实现求特征选择的信息增益
Dec 18 #Python
python实现连续图文识别
Dec 18 #Python
Django ManyToManyField 跨越中间表查询的方法
Dec 18 #Python
Python列表list排列组合操作示例
Dec 18 #Python
python实现二维插值的三维显示
Dec 17 #Python
You might like
10个可以简化php开发过程的MySQL工具
2010/04/11 PHP
PHP自定义函数收代码
2010/08/01 PHP
PHP从FLV文件获取视频预览图的方法
2015/03/12 PHP
php 读取文件夹下所有图片、文件的实例
2018/10/17 PHP
网页中实现浏览器的最大,最小化和关闭按钮
2007/03/12 Javascript
JS实现网页标题随机显示名人名言的方法
2015/11/03 Javascript
JavaScript的函数式编程基础指南
2016/03/19 Javascript
jQuery实现内容定时切换效果完整实例
2016/04/06 Javascript
jquery之别踩白块游戏的简单实现
2016/07/25 Javascript
使用Bootstrap美化按钮实例代码(demo)
2017/02/03 Javascript
js+html5实现复制文字按钮
2017/07/15 Javascript
Angular2监听页面大小变化的解决方法
2017/10/09 Javascript
Vue无限滑动周选择日期的组件的示例代码
2018/07/18 Javascript
H5+C3+JS实现五子棋游戏(AI篇)
2020/05/28 Javascript
Vue + Node.js + MongoDB图片上传组件实现图片预览和删除功能详解
2020/04/29 Javascript
vue二选一tab栏切换新做法实现
2021/01/19 Vue.js
[06:33]DOTA2亚洲邀请赛小组赛第二日 TOP10精彩集锦
2015/01/31 DOTA
python定时采集摄像头图像上传ftp服务器功能实现
2013/12/23 Python
使用Python编写一个简单的tic-tac-toe游戏的教程
2015/04/16 Python
python好玩的项目—色情图片识别代码分享
2017/11/07 Python
Python中pandas dataframe删除一行或一列:drop函数详解
2018/07/03 Python
Python实现将数据写入netCDF4中的方法示例
2018/08/30 Python
浅谈python写入大量文件的问题
2018/11/09 Python
python实现TCP文件传输
2020/03/20 Python
浅谈Pycharm的项目文件名是红色的原因及解决方式
2020/06/01 Python
.img/.hdr格式转.nii格式的操作
2020/07/01 Python
PyCharm中关于安装第三方包的三个建议
2020/09/17 Python
幼儿园国庆节活动方案
2014/02/01 职场文书
鉴定评语大全
2014/05/05 职场文书
2014年国庆节演讲稿
2014/09/19 职场文书
2014副镇长民主生活会个人对照检查材料思想汇报
2014/09/30 职场文书
2015年初中元旦晚会活动总结
2014/11/28 职场文书
解除同居协议书
2015/01/29 职场文书
幼儿园2015年度工作总结
2015/04/01 职场文书
2016年党员读书月活动总结
2016/04/06 职场文书
浅谈Python数学建模之数据导入
2021/06/23 Python