python中struct模块之字节型数据的处理方法


Posted in Python onAugust 27, 2019

简介

这个模块处理python中常见类型数据和Python bytes之间转换。这可用于处理存储在文件或网络连接中的bytes数据以及其他来源。在python中没有专门处理字节的数据类型,建立字节型数据也比较麻烦,我们知道的bytes()函数也只能对无符号整型做处理,并且数据如下(没错,数字为多少就有多少个\x00,我们要是用这种方式来存储大量数据,结果可想而知):

va = bytes(1) # va: '\x00'
vb = bytes(2) # vb: '\x00\x00'
vc = bytes(5) # vc: '\x00\x00\x00\x00\x00'

但在python中str类型中既可以用字符串表示也可以以字节方式表示,所以你定义一个字节型的字符串常量,python是能处理它的:

va = '\x26' # va: '&'

struct处理

字节顺序

一个数据有多个字节表示的时候,字节的顺序不同也就决定了值,在struct中有以下几种字节顺序:

字符 字节顺序 尺寸 对齐方式
@ 本机 本机 本机
= 本机 标准
小端 标准
> 大端 标准
网络 标准

对于字节顺序,只有大端和小端两种方式,只是比如你用@和=代表你用本机的字节顺序,!代表你使用网络的字节顺序。你不指定字节顺序则默认的是@。

本地字节顺序是大端或小端,取决于主机系统。例如,Intel x86和AMD64(x86-64)是小端的; 摩托罗拉68000和PowerPC G5是大端; ARM和Intel Itanium具有可切换的字节序(双字节序)。使用sys.byteorder来检查你的系统的字节顺序。

数据格式

struct支持的打包解包的数据格式如下,我们需要指定格式才能对应处理,其中对应尺寸已列出(以字节为单位):

字符 C类型 python类型 标准尺寸
x 填充字节 没有意义的值
c char 长度为1的字节 1
b signed char 整型 1
B unsigned char 整型 1
_Bool 布尔 1
h short 整型 2
H unsigned short 整型 2
i int 整型 4
I unsigned int 整型 4
l long 整型 4
L unsigned long 整型 4
q long long 整型 8
Q unsigned long long 整型 8
n ssize_t 整型
N size_t 整型
e 浮动 2
f float 浮动 4
d double 浮动 8
s char[] 字节
p char[] 字节
P void * 整型

打包

通过struct的pack(fmt, *args)来实现对各种数据的打包(转换为对应字节数据),pack的需要传递的参数fmt就是数据的格式,包括了字节顺序、数据类型;后面的*args参数是需要打包的数据。

vaa = struct.pack('>I', 1255) # vaa: '\x00\x00\x04\xe7' 1*4=1个字节 vab = struct.pack('>II', 1255, 23) # vab: '\x00\x00\x04\xe7\x00\x00\x00\x17' 2*4=8个字节 vac = struct.pack('>2I?', 1255, 23, True) # vac: '\x00\x00\x04\xe7\x00\x00\x00\x17\x01' 2*4+1=9个字节

我们看上述三个使用例子(数据与数据之间没有填充,都是连续的,比如对于vac我们不知道 它是由两个4字节无符号整型和一个布尔构成,我们就无法取得正确的值),看fmt参数:

‘>I'代表了以大端的字节顺序打包一个4字节无符号整型数据,所以后面只跟了一个无符号整型参数1255;

‘>II'代表了以大端的字节顺序打包两个4字节无符号整型数据,所以后面跟了两个个无符号整型参数1255和23;

‘>2I?'代表了以大端的字节顺序打包两个4字节无符号整型和一个布尔型数据,所以后面跟了两个个无符号整型参数1255、23和一个布尔值True。

注意'2I'和'II','4I'和'IIII','2?'和'??'是一样的效果。

解包

通过struct的unpack(fmt, string)来实现对字符串的解包,fmt和打包的是完全一样的,如下(返回的结果是一个元组):

vaa = struct.pack('>I', 1255) # vaa: '\x00\x00\x04\xe7'
vab = struct.pack('>II', 1255, 23) # vab: '\x00\x00\x04\xe7\x00\x00\x00\x17'
vaaa = struct.unpack('>I', vaa) # vaaa: <class 'tuple'>: (1255, )
vaba = struct.unpack('>II', vab) # vaba: <class 'tuple'>: (1255, 23)

进阶使用

pack_into(fmt, buffer, offset, *args)

fmt参数和pack是一样的,buffer参数是可写的缓存区,offset是写入位置的偏移量,*args是需要写入的数据。这个有什么用呢,我们想想这样两个情况,我们有两个类型已经打包好,我们想在这两个已经打包好的数据后面再添加一个数据打包;或者我们要打包的数据很多,我们不可能在pack中把所有需要打包的数据都通过参数传递给pack,那你的pack函数可能得写成千上完个参数了。这时候我们就可以用到这个函数了。

要使用它必须要一个可以写入的缓存区,我们可以导入一个字符缓存区包,然后创建一个固定大小的缓存区(以字节为单位):

import struct
from ctypes import create_string_buffer

# 创建一个9字节大小的缓存区,初始化默认全部为\x00 
buf = create_string_buffer(9) # buf.raw: '\x00\x00\x00\x00\x00\x00\x00\x00\x00'

# 冲缓存区buf的第0个字节开始打包两个4字节无符号整型数据1和2
struct.pack_into(">II", buf, 0, 1, 2) # buf.raw: '\x00\x00\x00\x01\x00\x00\x00\x02\x00'
# 然后我们想再打包一个布尔型数据到buf中就可以改变以下偏移量
struct.pack_into(">?", buf, 8, True) # buf.raw: '\x00\x00\x00\x01\x00\x00\x00\x02\x01'

unpack_from(fmt, buffer, offset)和calcsize(fmt)结合解包数据

calcsize用于计算格式字符串所对应的结果的长度,如:struct.calcsize(‘II'),返回8。因为两个无符号整型所占用的长度是8个字节。unpack_from(fmt, buffer, offset)用于从buffer缓存区中使用fmt格式从offset偏移量处开始解包fmt里对应数量的数据。

import struct
from ctypes import create_string_buffer

buf = create_string_buffer(9)
struct.pack_into(">II", buf, 0, 1, 2)
struct.pack_into(">?", buf, 8, True)
# 记录位置
pos = 0
# 从buf缓存区中以大端方式从偏移位置pos处解包两个无符号整型数据返回,注意
#返回值如果只写一个则返回一个元组,否则你解包几个数据就要写几个返回值。
val = struct.unpack_from('>II', buf, pos) # val: <class 'tuple'>: (1, 2)
val_a, val_b = struct.unpack_from('>II', buf, pos) # val_a: 1 val_b: 2

# 重置解包位置
pos += struct.calcsize('>II') # pos: 8
val_c, = struct.unpack_from('>?', buf, pos) # val_c: True

示例

这个示例是基于mnist手写数字识别的,我们刚开始有60000张手写数字的图片(.bmp格式的),我们通过下述代码将60000张图片转换成字节型数据,bytes.py代码如下:

import struct
import os
import numpy as np
from ctypes import create_string_buffer
import cv2

# 创建一个60000 * 784 * 1 + 3 * 4字节大小的缓存区,初始化默认全部为\x00
buffer = create_string_buffer(60000 * 784 * 1 + 3 * 4)
def writeBytesData():
 index = 0
 BMP_NUM = 0
 BMP_WIDTH = 28
 BMP_HEIGHT = 28

 # 先保留三个无符号整型的缓存区
 index += struct.calcsize('>III')
 path = 'data/bmp'
 if not os.path.exists(path):
  print('No this dir!')
  return
 list = os.listdir(path)
 for line_bmp in list:
  bmp_path = os.path.join(path, line_bmp)
  if os.path.isdir(bmp_path):
   print('This is not a .bmp')
  else:
   BMP_NUM += 1
   print(BMP_NUM)
   buf = cv2.imread(bmp_path, cv2.IMREAD_GRAYSCALE)
   buf = np.reshape(buf, [784])
   for pos in range(buf.__len__()):
    struct.pack_into('>B', buffer, index, buf[pos])
    index += struct.calcsize('>B')

 # 将保留缓存区的内容填上
 struct.pack_into('>III', buffer, 0, BMP_NUM, BMP_WIDTH, BMP_HEIGHT)
 with open('data/bytes/bytes.bytes', 'wb') as fp:
  fp.write(buffer)


def readFromBytes():
 index = 0
 images = []
 with open('data/bytes/bytes.bytes', 'rb') as fp:
  buffer = fp.read()
  # 解包前三个无符号整型
  bmp_num, bmp_width, bmp_height = struct.unpack_from('>III', buffer, index)

  # 重定位偏移量
  index += struct.calcsize('>III')
  for pos in range(bmp_num):
   img = struct.unpack_from('>784B', buffer, index)
   index += struct.calcsize('>784B')
   # 修改为原来的图片形状
   img = np.array(img, dtype=np.uint8)
   img = np.reshape(img, [bmp_height, bmp_width])
   # 显示图片
   cv2.imshow('bmp', img)
   # 按任意键继续
   cv2.waitKey(0)
   images.append(img)
 return images


writeBytesData()
readFromBytes()

在写入bytes文件的时候有点慢,由于有60000张图片每张要写28 * 28个字节,其中目录结构如下,需要图片的可以去我的下载区下载mnist图片数据集:

bytes.py
data
 bmp
  1.bmp
  2.bmp
  ...
  60000.bmp
 bytes

以上这篇python中struct模块之字节型数据的处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现批量把SVG格式转成png、pdf格式的代码分享
Aug 21 Python
Python首次安装后运行报错(0xc000007b)的解决方法
Oct 18 Python
Python基于tkinter模块实现的改名小工具示例
Jul 27 Python
pandas系列之DataFrame 行列数据筛选实例
Apr 12 Python
神经网络(BP)算法Python实现及应用
Apr 16 Python
Tensorflow 查看变量的值方法
Jun 14 Python
详解Python用户登录接口的方法
Apr 17 Python
Python3.5模块的定义、导入、优化操作图文详解
Apr 27 Python
python中count函数简单用法
Jan 05 Python
解决Pytorch 加载训练好的模型 遇到的error问题
Jan 10 Python
matplotlib 曲线图 和 折线图 plt.plot()实例
Apr 17 Python
Python3实现英文字母转换哥特式字体实例代码
Sep 01 Python
Python的bit_length函数来二进制的位数方法
Aug 27 #Python
使用python将excel数据导入数据库过程详解
Aug 27 #Python
python读取指定字节长度的文本方法
Aug 27 #Python
Django中的cookie和session
Aug 27 #Python
Python3之字节串bytes与字节数组bytearray的使用详解
Aug 27 #Python
Python如何应用cx_Oracle获取oracle中的clob字段问题
Aug 27 #Python
在Python中获取操作系统的进程信息
Aug 27 #Python
You might like
Ajax+PHP 边学边练 之二 实例
2009/11/24 PHP
php异常:Parse error: syntax error, unexpected T_ENCAPSED_AND_WHITESPACE  eval()'d code error
2011/05/19 PHP
laravel 修改.htaccess文件 重定向public的解决方法
2019/10/12 PHP
Highslide.js是一款基于js实现的网页中图片展示插件
2020/03/30 Javascript
JavaScript 学习笔记二 字符串拼接
2010/03/28 Javascript
For循环中分号隔开的3部分的执行顺序探讨
2014/05/27 Javascript
2则自己编写的jQuery特效分享
2015/02/26 Javascript
JS实现获取键盘按下的按键并显示在页面上的方法
2015/11/04 Javascript
Jquery跨域获得Json的简单实例
2016/05/18 Javascript
vue分页组件table-pagebar使用实例解析
2020/11/15 Javascript
angularJs使用$watch和$filter过滤器制作搜索筛选实例
2017/06/01 Javascript
JavaScript生成简单等差数列
2017/11/28 Javascript
浅谈微信小程序flex布局基础
2018/09/10 Javascript
原生JS实现的自动轮播图功能详解
2018/12/28 Javascript
JavaScript刷新页面的几种方法总结
2019/03/28 Javascript
Vue el-autocomplete远程搜索下拉框并实现自动填充功能(推荐)
2019/10/25 Javascript
小程序api实现promise封装过程解析
2019/11/21 Javascript
浅谈JavaScript窗体Window.ShowModalDialog使用
2020/07/22 Javascript
Python中的二叉树查找算法模块使用指南
2014/07/04 Python
Python实现导出数据生成excel报表的方法示例
2017/07/12 Python
基于Python socket的端口扫描程序实例代码
2018/02/09 Python
python ChainMap的使用和说明详解
2019/06/11 Python
python实现在函数图像上添加文字和标注的方法
2019/07/08 Python
python画微信表情符的实例代码
2019/10/09 Python
详解Pycharm第三方库的安装及使用方法
2020/12/29 Python
Theflamel意大利:女士奢华服装、鞋子和配件
2020/01/11 全球购物
端口镜像是怎么实现的
2014/03/25 面试题
高三自我鉴定
2013/10/23 职场文书
个性大学生自我评价
2013/12/04 职场文书
推荐信格式范文
2014/05/09 职场文书
师德师风个人自我剖析材料
2014/09/27 职场文书
2016特色励志班级口号
2015/12/24 职场文书
CSS3 Tab动画实例之背景切换动态效果
2021/08/23 HTML / CSS
vue实现书本翻页动画效果实例详解
2022/04/08 Vue.js
JavaScript实现九宫格拖拽效果
2022/06/28 Javascript
Python如何利用pandas读取csv数据并绘图
2022/07/07 Python