Python中的Numpy矩阵操作


Posted in Python onAugust 12, 2018

Numpy

通过观察Python的自有数据类型,我们可以发现Python原生并不提供多维数组的操作,那么为了处理矩阵,就需要使用第三方提供的相关的包。

NumPy 是一个非常优秀的提供矩阵操作的包。NumPy的主要目标,就是提供多维数组,从而实现矩阵操作。

NumPy's main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive integers. In NumPy dimensions are called axes.

基本操作

#######################################
# 创建矩阵
#######################################
from numpy import array as matrix, arange

# 创建矩阵
a = arange(15).reshape(3,5)
a

# Out[10]:
# array([[0., 0., 0., 0., 0.],
#    [0., 0., 0., 0., 0.],
#    [0., 0., 0., 0., 0.]])

b = matrix([2,2])
b

# Out[33]: array([2, 2])

c = matrix([[1,2,3,4,5,6],[7,8,9,10,11,12]], dtype=int)
c

 
# Out[40]:
# array([[ 1, 2, 3, 4, 5, 6],
#    [ 7, 8, 9, 10, 11, 12]])
#######################################
# 创建特殊矩阵
#######################################
from numpy import zeros, ones,empty

z = zeros((3,4))
z

# Out[43]:
# array([[0., 0., 0., 0.],
#    [0., 0., 0., 0.],
#    [0., 0., 0., 0.]])

o = ones((3,4))
o

# Out[46]:
# array([[1., 1., 1., 1.],
#    [1., 1., 1., 1.],
#    [1., 1., 1., 1.]])

e = empty((3,4))
e

# Out[47]:
# array([[0., 0., 0., 0.],
#    [0., 0., 0., 0.],
#    [0., 0., 0., 0.]])
#######################################
# 矩阵数学运算
#######################################
from numpy import array as matrix, arange

a = arange(9).reshape(3,3)
a

# Out[10]:
# array([[0, 1, 2],
#    [3, 4, 5],
#    [6, 7, 8]])

b = arange(3)
b

# Out[14]: array([0, 1, 2])

a + b

# Out[12]:
# array([[ 0, 2, 4],
#    [ 3, 5, 7],
#    [ 6, 8, 10]])

a - b

# array([[0, 0, 0],
#    [3, 3, 3],
#    [6, 6, 6]])

a * b

# Out[11]:
# array([[ 0, 1, 4],
#    [ 0, 4, 10],
#    [ 0, 7, 16]])

a < 5

# Out[12]:
# array([[ True, True, True],
#    [ True, True, False],
#    [False, False, False]])

a ** 2

# Out[13]:
# array([[ 0, 1, 4],
#    [ 9, 16, 25],
#    [36, 49, 64]], dtype=int32)

a += 3
a

# Out[17]:
# array([[ 3, 4, 5],
#    [ 6, 7, 8],
#    [ 9, 10, 11]])
#######################################
# 矩阵内置操作
#######################################
from numpy import array as matrix, arange

a = arange(9).reshape(3,3)
a

# Out[10]:
# array([[0, 1, 2],
#    [3, 4, 5],
#    [6, 7, 8]])

a.max()

# Out[23]: 8

a.min()

# Out[24]: 0

a.sum()

# Out[25]: 36
#######################################
# 矩阵索引、拆分、遍历
#######################################
from numpy import array as matrix, arange

a = arange(25).reshape(5,5)
a

# Out[9]:
# array([[ 0, 1, 2, 3, 4],
#    [ 5, 6, 7, 8, 9],
#    [10, 11, 12, 13, 14],
#    [15, 16, 17, 18, 19],
#    [20, 21, 22, 23, 24]])

a[2,3]   # 取第3行第4列的元素

# Out[3]: 13

a[0:3,3]  # 取第1到3行第4列的元素

# Out[4]: array([ 3, 8, 13])

a[:,2]   # 取所有第二列元素

# Out[7]: array([ 2, 7, 12, 17, 22])

a[0:3,:]  # 取第1到3行的所有列

# Out[8]:
# array([[ 0, 1, 2, 3, 4],
#    [ 5, 6, 7, 8, 9],
#    [10, 11, 12, 13, 14]])

a[-1]  # 取最后一行

# Out[10]: array([20, 21, 22, 23, 24])

for row in a:  # 逐行迭代
  print(row)

# [0 1 2 3 4]
# [5 6 7 8 9]
# [10 11 12 13 14]
# [15 16 17 18 19]
# [20 21 22 23 24]

for element in a.flat: # 逐元素迭代,从左到右,从上到下
  print(element)

# 0
# 1
# 2
# 3
# ... #######################################
# 改变矩阵
#######################################
from numpy import array as matrix, arange

b = arange(20).reshape(5,4)

b

# Out[18]:
# array([[ 0, 1, 2, 3],
#    [ 4, 5, 6, 7],
#    [ 8, 9, 10, 11],
#    [12, 13, 14, 15],
#    [16, 17, 18, 19]])

b.ravel()

# Out[16]:
# array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
#    17, 18, 19])

b.reshape(4,5)

# Out[17]:
# array([[ 0, 1, 2, 3, 4],
#    [ 5, 6, 7, 8, 9],
#    [10, 11, 12, 13, 14],
#    [15, 16, 17, 18, 19]])

b.T   # reshape 方法不改变原矩阵的值,所以需要使用 .T 来获取改变后的值

# Out[19]:
# array([[ 0, 4, 8, 12, 16],
#    [ 1, 5, 9, 13, 17],
#    [ 2, 6, 10, 14, 18],
#    [ 3, 7, 11, 15, 19]])
#######################################
# 合并矩阵
#######################################
from numpy import array as matrix,newaxis
import numpy as np

d1 = np.floor(10*np.random.random((2,2)))
d2 = np.floor(10*np.random.random((2,2)))

d1

# Out[7]:
# array([[1., 0.],
#    [9., 7.]])

d2

# Out[9]:
# array([[0., 0.],
#    [8., 9.]])

np.vstack((d1,d2)) # 按列合并

# Out[10]:
# array([[1., 0.],
#    [9., 7.],
#    [0., 0.],
#    [8., 9.]])

np.hstack((d1,d2)) # 按行合并

# Out[11]:
# array([[1., 0., 0., 0.],
#    [9., 7., 8., 9.]])

np.column_stack((d1,d2)) # 按列合并

# Out[13]:
# array([[1., 0., 0., 0.],
#    [9., 7., 8., 9.]])

c1 = np.array([11,12])
c2 = np.array([21,22])

np.column_stack((c1,c2))

# Out[14]:
# array([[11, 21],
#    [12, 22]])

c1[:,newaxis]  # 添加一个“空”列

# Out[18]:
# array([[11],
#    [12]])

np.hstack((c1,c2))

# Out[27]: array([11, 12, 21, 22])

np.hstack((c1[:,newaxis],c2[:,newaxis]))

# Out[28]:
# array([[11, 21],
#    [12, 22]])

参考

1.NumPy官方文档

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python logging类库使用例子
Nov 22 Python
python黑魔法之编码转换
Jan 25 Python
Python自动发邮件脚本
Mar 31 Python
python 给DataFrame增加index行名和columns列名的实现方法
Jun 08 Python
对python3中pathlib库的Path类的使用详解
Oct 14 Python
python实现图片筛选程序
Oct 24 Python
python用opencv批量截取图像指定区域的方法
Jan 24 Python
Python实现变声器功能(萝莉音御姐音)
Dec 05 Python
python图形用户接口实例详解
Dec 16 Python
django 读取图片到页面实例
Mar 27 Python
基于PyTorch中view的用法说明
Mar 03 Python
Python制作一个随机抽奖小工具的实现
Jul 07 Python
浅谈python之新式类
Aug 12 #Python
详解Django中类视图使用装饰器的方式
Aug 12 #Python
python中pip的安装与使用教程
Aug 10 #Python
python3判断url链接是否为404的方法
Aug 10 #Python
Python实现数据可视化看如何监控你的爬虫状态【推荐】
Aug 10 #Python
Selenium元素的常用操作方法分析
Aug 10 #Python
Selenium定位元素操作示例
Aug 10 #Python
You might like
PHP CURL CURLOPT参数说明(curl_setopt)
2013/09/30 PHP
一个显示效果非常不错的PHP错误、异常处理类
2014/03/21 PHP
PHP限制HTML内容中图片必须是本站的方法
2015/06/16 PHP
简单谈谈PHP中的Reload操作
2016/12/12 PHP
laravel 解决后端无法获取到前端Post过来的值问题
2019/10/22 PHP
PHP快速导出百万级数据到CSV或者EXCEL文件
2020/11/27 PHP
兼容主流浏览器的iframe自适应高度js脚本
2014/01/10 Javascript
seajs中模块的解析规则详解和模块使用总结
2014/03/12 Javascript
快速掌握Node.js事件驱动模型
2016/03/21 Javascript
jQuery绑定事件-多种实现方式总结
2016/05/09 Javascript
微信小程序 首页制作简单实例
2017/04/07 Javascript
vue axios同步请求解决方案
2017/09/29 Javascript
vue与TypeScript集成配置最简教程(推荐)
2017/10/17 Javascript
nodejs高大上的部署方式(PM2)
2018/09/11 NodeJs
vue elementUI tree树形控件获取父节点ID的实例
2018/09/12 Javascript
利用jsonp解决js读取本地json跨域的问题
2018/12/11 Javascript
你或许不知道的一些npm实用技巧
2019/07/04 Javascript
jQuery实现弹幕特效
2019/11/29 jQuery
JavaScript或jQuery 获取option value值方法解析
2020/05/12 jQuery
python应用程序在windows下不出现cmd窗口的办法
2014/05/29 Python
Python开发常用的一些开源Package分享
2015/02/14 Python
python实现的希尔排序算法实例
2015/07/01 Python
python中set()函数简介及实例解析
2018/01/09 Python
Python之批量创建文件的实例讲解
2018/05/10 Python
python获取微信小程序手机号并绑定遇到的坑
2018/11/19 Python
python3安装crypto出错及解决方法
2019/07/30 Python
python实现从ftp服务器下载文件
2020/03/03 Python
Python实现京东抢秒杀功能
2021/01/25 Python
英国第一的滑雪服装和装备零售商:Snow+Rock
2020/02/01 全球购物
VLAN和VPN有什么区别?分别实现在OSI的第几层?
2014/12/23 面试题
开业庆典主持词
2014/03/21 职场文书
毕业自我鉴定总结
2014/03/24 职场文书
湖南省召开党的群众路线教育实践活动总结大会报告
2014/10/21 职场文书
2015年元旦晚会活动总结(学生会)
2014/11/28 职场文书
营业员岗位职责范本
2015/04/14 职场文书
2015年计划生育责任书
2015/05/08 职场文书