Python排序算法实例代码


Posted in Python onAugust 10, 2017

排序算法,下面算法均是使用Python实现:

插入排序

原理:循环一次就移动一次元素到数组中正确的位置,通常使用在长度较小的数组的情况以及作为其它复杂排序算法的一部分,比如mergesort或quicksort。时间复杂度为 O(n2) 。

# 1nd: 两两交换
def insertion_sort(arr):
 for i in range(1, len(arr)):
  j = i
  while j >= 0 and arr[j-1] > arr[j]:
   arr[j], arr[j-1] = arr[j-1], arr[j]
   j -= 1
 return arr
# 2nd: 交换,最后处理没交换的
def insertion_sort2(arr):
 for i in range(1, len(arr)):
  j = i-1
  key = arr[i]
  while j >= 0 and arr[j] > key:
   arr[j+1] = arr[j]
   j -= 1
  arr[j+1] = key
 return arr
# 3nd: 加速版本,利用已经排好了序的进行二分查找
def insertion_sort3(seq):
 for i in range(1, len(seq)):
  key = seq[i]
  # invariant: ``seq[:i]`` is sorted
  # find the least `low' such that ``seq[low]`` is not less then `key'.
  # Binary search in sorted sequence ``seq[low:up]``:
  low, up = 0, i
  while up > low:
   middle = (low + up) // 2
   if seq[middle] < key:
    low = middle + 1
   else:
    up = middle
  # insert key at position ``low``
  seq[:] = seq[:low] + [key] + seq[low:i] + seq[i + 1:]
 return seq
# 4nd: 原理同上,使用bisect
import bisect
def insertion_sort4(seq):
 for i in range(1, len(seq)):
  bisect.insort(seq, seq.pop(i), 0, i) # 默认插在相同元素的左边
 return seq

选择排序

原理:每一趟都选择最小的值和当前下标的值进行交换,适用在大型的数组,时间复杂度为 O(n2)

# 1nd: for
def select_sort(seq):
 for i in range(0, len(seq)):
  mi = i
  for j in range(i, len(seq)):
   if seq[j] < seq[mi]:
    mi = j
  seq[mi], seq[i] = seq[i], seq[mi]
 return seq
# 2nd: min
def select_sort2(seq):
 for i, x in enumerate(seq):
  mi = min(range(i, len(seq)), key=seq.__getitem__)
  seq[i], seq[mi] = seq[mi], x
 return seq

冒泡排序

原理:比较数组中两两相邻的数,如果第一个大于第二个,就进行交换,重复地走访过要排序的数列,达到将最小的值移动到最上面的目的,适用于小型数组,时间复杂度为O(n2)

def bubble_sort(seq):
 for i in range(len(seq)):
  for j in range(len(seq)-1-i):
   if seq[j] > seq[j+1]:
    seq[j], seq[j+1] = seq[j+1], seq[j]
 return seq
def bubble_sort2(seq):
 for i in range(0, len(seq)):
  for j in range(i + 1, len(seq)):
   if seq[i] > seq[j]:
    seq[i], seq[j] = seq[j], seq[i]
 return seq

快速排序

原理:从数组中选择pivot,分成两个数组,一个是比pivot小,一个是比pivot大,最后将这两个数组和pivot进行合并,最好情况下时间复杂度为O(n log n),最差情况下时间复杂度为O(n2)

def quick_sort(seq):
 if len(seq) >= 1:
  pivot_idx = len(seq)//2
  small, large = [], []
  for i, val in enumerate(seq):
   if i != pivot_idx:
    if val <= seq[pivot_idx]:
     small.append(val)
    else:
     large.append(val)
  quick_sort(small)
  quick_sort(large)
  return small + [seq[pivot_idx]] + large
 else:
  return seq

归并排序

原理:归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

# 1nd: 将两个有序数组合并到一个数组
def merge(left, right):
 i, j = 0, 0
 result = []
 while i < len(left) and j < len(right):
  if left[i] <= right[j]:
   result.append(left[i])
   i += 1
  else:
   result.append(right[j])
   j += 1
 result += left[i:]
 result += right[j:]
 return result
def merge_sort(lists):
 if len(lists) <= 1:
  return lists
 num = len(lists) / 2
 left = merge_sort(lists[:num])
 right = merge_sort(lists[num:])
 return merge(left, right)
# 2nd: use merge
from heapq import merge
def merge_sort2(m):
 if len(m) <= 1:
  return m
 middle = len(m) // 2
 left = m[:middle]
 right = m[middle:]
 left = merge_sort(left)
 right = merge_sort(right)
 return list(merge(left, right))

堆排序

原理:堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。平均时间复杂度为O(n logn)

# 1nd: normal
def swap(seq, i, j):
 seq[i], seq[j] = seq[j], seq[i]
# 调整堆
def heapify(seq, end, i):
 l = 2 * i + 1
 r = 2 * (i + 1)
 ma = i
 if l < end and seq[i] < seq[l]:
  ma = l
 if r < end and seq[ma] < seq[r]:
  ma = r
 if ma != i:
  swap(seq, i, ma)
  heapify(seq, end, ma)
def heap_sort(seq):
 end = len(seq)
 start = end // 2 - 1
 # 创建堆
 for i in range(start, -1, -1):
  heapify(seq, end, i)
 for i in range(end - 1, 0, -1):
  swap(seq, i, 0)
  heapify(seq, i, 0)
 return seq
# 2nd: use heapq
import heapq
def heap_sort2(seq):
 """ Implementation of heap sort """
 heapq.heapify(seq)
 return [heapq.heappop(seq) for _ in range(len(seq))]

希尔排序

原理:希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

def shell_sort(seq):
 count = len(seq)
 step = 2
 group = count // step
 while group > 0:
 for i in range(0, group):
 j = i + group
 while j < count:
 k = j - group
 key = seq[j]
 while k >= 0:
  if seq[k] > key:
  seq[k + group] = seq[k]
  seq[k] = key
  k -= group
 j += group
 group //= step
 return seq

区别

Python排序算法实例代码

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
使用Python写个小监控
Jan 27 Python
Python操作SQLite数据库的方法详解
Jun 16 Python
Python基于pyCUDA实现GPU加速并行计算功能入门教程
Jun 19 Python
Python字符串对象实现原理详解
Jul 01 Python
在Python函数中输入任意数量参数的实例
Jul 16 Python
如何用Python来搭建一个简单的推荐系统
Aug 07 Python
pytorch numpy list类型之间的相互转换实例
Aug 18 Python
python库matplotlib绘制坐标图
Oct 18 Python
pytorch 准备、训练和测试自己的图片数据的方法
Jan 10 Python
Jupyter notebook快速入门教程(推荐)
May 18 Python
如何完美的建立一个python项目
Oct 09 Python
Python实现日志实时监测的示例详解
Apr 06 Python
简单谈谈python中的语句和语法
Aug 10 #Python
Python中如何优雅的合并两个字典(dict)方法示例
Aug 09 #Python
Python中使用多进程来实现并行处理的方法小结
Aug 09 #Python
Python基于matplotlib绘制栈式直方图的方法示例
Aug 09 #Python
Python2.7编程中SQLite3基本操作方法示例
Aug 09 #Python
Django 前后台的数据传递的方法
Aug 08 #Python
关于python pyqt5安装失败问题的解决方法
Aug 08 #Python
You might like
在WINDOWS中设置计划任务执行PHP文件的方法
2011/12/19 PHP
PHP递归算法的详细示例分析
2013/02/19 PHP
PHP 5.3新增魔术方法__invoke概述
2014/07/23 PHP
两千行代码的PHP学习笔记汇总
2014/10/05 PHP
PHP获取ip对应地区和使用网络类型的方法
2015/03/11 PHP
php操作redis缓存方法分享
2015/06/03 PHP
php模仿qq空间或朋友圈发布动态、评论动态、回复评论、删除动态或评论的功能(中)
2017/06/11 PHP
JavaScript 替换Html标签实现代码
2009/10/14 Javascript
jquery表格内容筛选实现思路及代码
2013/04/16 Javascript
javascript实现简单的Map示例介绍
2013/12/23 Javascript
jQuery如何获取同一个类标签的所有值(默认无法获取)
2014/09/25 Javascript
使用jquery动态加载js文件的方法
2014/12/24 Javascript
浅谈angular懒加载的一些坑
2016/08/20 Javascript
微信小程序 wx.uploadFile在安卓手机上面the same task is working问题解决
2016/12/14 Javascript
nodeJS删除文件方法示例
2016/12/25 NodeJs
简单快速的实现js计算器功能
2017/08/17 Javascript
jQuery EasyUI结合zTree树形结构制作web页面
2017/09/01 jQuery
jquery动态添加带有样式的HTML标签元素方法
2018/02/24 jQuery
JavaScript callback回调函数用法实例分析
2018/05/08 Javascript
js Math数学简单使用操作示例
2020/03/13 Javascript
Centos5.x下升级python到python2.7版本教程
2015/02/14 Python
python3爬取各类天气信息
2018/02/24 Python
python opencv捕获摄像头并显示内容的实现
2019/07/11 Python
如何使用Python多线程测试并发漏洞
2019/12/18 Python
python实现每天自动签到领积分的示例代码
2020/08/18 Python
Genny意大利官网:意大利高级时装品牌
2020/04/15 全球购物
营销与策划应届生求职信
2013/11/04 职场文书
毕业生个人求职信范文分享
2014/01/05 职场文书
教师个人剖析材料
2014/02/05 职场文书
高中军训感言800字
2014/03/05 职场文书
2014年小班保育员工作总结
2014/12/23 职场文书
我的中国梦主题教育活动总结
2015/05/07 职场文书
党支部季度考核意见
2015/06/02 职场文书
小学生暑假生活总结
2015/07/13 职场文书
golang中的空接口使用详解
2021/03/30 Python
海弦WR-800F
2022/04/05 无线电