Go语言安装并操作redis的go-redis库


Posted in Golang onApril 14, 2022

Redis介绍

Redis是一个开源的内存数据库,Redis提供了多种不同类型的数据结构,很多业务场景下的问题都可以很自然地映射到这些数据结构上。除此之外,通过复制、持久化和客户端分片等特性,我们可以很方便地将Redis扩展成一个能够包含数百GB数据、每秒处理上百万次请求的系统。

Redis支持的数据结构

Redis支持诸如字符串(strings)、哈希(hashes)、列表(lists)、集合(sets)、带范围查询的排序集合(sorted sets)、位图(bitmaps)、hyperloglogs、带半径查询和流的地理空间索引等数据结构(geospatial indexes)。

Redis应用场景

  • 缓存系统,减轻主数据库(MySQL)的压力。
  • 计数场景,比如微博、抖音中的关注数和粉丝数。
  • 热门排行榜,需要排序的场景特别适合使用ZSET。
  • 利用LIST可以实现队列的功能。

准备Redis环境

这里直接使用Docker启动一个redis环境,方便学习使用。

docker启动一个名为redis507的5.0.7版本的redis server示例:

docker run --name redis507 -p 6379:6379 -d redis:5.0.7

注意:此处的版本、容器名和端口号请根据自己需要设置。

启动一个redis-cli连接上面的redis server:

docker run -it --network host --rm redis:5.0.7 redis-cli

go-redis库

安装

区别于另一个比较常用的Go语言redis client库:redigo,我们这里采用https://github.com/go-redis/redis连接Redis数据库并进行操作,因为go-redis支持连接哨兵及集群模式的Redis。

使用以下命令下载并安装:

go get -u github.com/go-redis/redis

连接

普通连接

// 声明一个全局的rdb变量
var rdb *redis.Client
// 初始化连接
func initClient() (err error) {
	rdb = redis.NewClient(&redis.Options{
		Addr:     "localhost:6379",
		Password: "", // no password set
		DB:       0,  // use default DB
	})
	_, err = rdb.Ping().Result()
	if err != nil {
		return err
	}
	return nil
}

V8新版本相关

最新版本的go-redis库的相关命令都需要传递context.Context参数,例如:

package main
import (
	"context"
	"fmt"
	"time"
	"github.com/go-redis/redis/v8" // 注意导入的是新版本
)
var (
	rdb *redis.Client
)
// 初始化连接
func initClient() (err error) {
	rdb = redis.NewClient(&redis.Options{
		Addr:     "localhost:16379",
		Password: "",  // no password set
		DB:       0,   // use default DB
		PoolSize: 100, // 连接池大小
	})
	ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
	defer cancel()
	_, err = rdb.Ping(ctx).Result()
	return err
}
func V8Example() {
	ctx := context.Background()
	if err := initClient(); err != nil {
		return
	}

	err := rdb.Set(ctx, "key", "value", 0).Err()
	if err != nil {
		panic(err)
	}

	val, err := rdb.Get(ctx, "key").Result()
	if err != nil {
		panic(err)
	}
	fmt.Println("key", val)
	val2, err := rdb.Get(ctx, "key2").Result()
	if err == redis.Nil {
		fmt.Println("key2 does not exist")
	} else if err != nil {
		panic(err)
	} else {
		fmt.Println("key2", val2)
	}
	// Output: key value
	// key2 does not exist
}

连接Redis哨兵模式

func initClient()(err error){
	rdb := redis.NewFailoverClient(&redis.FailoverOptions{
		MasterName:    "master",
		SentinelAddrs: []string{"x.x.x.x:26379", "xx.xx.xx.xx:26379", "xxx.xxx.xxx.xxx:26379"},
	})
	_, err = rdb.Ping().Result()
	if err != nil {
		return err
	}
	return nil
}

连接Redis集群

func initClient()(err error){
	rdb := redis.NewClusterClient(&redis.ClusterOptions{
		Addrs: []string{":7000", ":7001", ":7002", ":7003", ":7004", ":7005"},
	})
	_, err = rdb.Ping().Result()
	if err != nil {
		return err
	}
	return nil
}

基本使用

HVals

package main
import (
	"fmt"
	"github.com/go-redis/redis"
	"reflect"
)
var rdb *redis.Client
// 初始化连接
func initClient() (err error) {
	rdb = redis.NewClient(&redis.Options{
		Addr:     "10.0.3.100:6379",
		Password: "EfcHGSzKqg6cfzWq", // no password set
		DB:       8,  // use default DB
	})

	_, err = rdb.Ping().Result()
	if err != nil {
		return err
	}
	return nil
}
func main() {
	err:=initClient()
	if err != nil {
		fmt.Println(err)
	}
	value,err2 := rdb.HVals("toutiao_web_gt100").Result()
	if err2 != nil {
		fmt.Println(err2)
	}
	fmt.Println(reflect.TypeOf(value))
	fmt.Println(len(value))
	for i,j:=0,len(value);i<j;i++{
		fmt.Println(value[i])
	}
}

set/get示例

func redisExample() {
	err := rdb.Set("score", 100, 0).Err()
	if err != nil {
		fmt.Printf("set score failed, err:%v\n", err)
		return
	}
	val, err := rdb.Get("score").Result()
	if err != nil {
		fmt.Printf("get score failed, err:%v\n", err)
		return
	}
	fmt.Println("score", val)
	val2, err := rdb.Get("name").Result()
	if err == redis.Nil {
		fmt.Println("name does not exist")
	} else if err != nil {
		fmt.Printf("get name failed, err:%v\n", err)
		return
	} else {
		fmt.Println("name", val2)
	}
}

zset示例

func redisExample2() {
	zsetKey := "language_rank"
	languages := []redis.Z{
		redis.Z{Score: 90.0, Member: "Golang"},
		redis.Z{Score: 98.0, Member: "Java"},
		redis.Z{Score: 95.0, Member: "Python"},
		redis.Z{Score: 97.0, Member: "JavaScript"},
		redis.Z{Score: 99.0, Member: "C/C++"},
	}
	// ZADD
	num, err := rdb.ZAdd(zsetKey, languages...).Result()
	if err != nil {
		fmt.Printf("zadd failed, err:%v\n", err)
		return
	}
	fmt.Printf("zadd %d succ.\n", num)

	// 把Golang的分数加10
	newScore, err := rdb.ZIncrBy(zsetKey, 10.0, "Golang").Result()
	if err != nil {
		fmt.Printf("zincrby failed, err:%v\n", err)
		return
	}
	fmt.Printf("Golang's score is %f now.\n", newScore)

	// 取分数最高的3个
	ret, err := rdb.ZRevRangeWithScores(zsetKey, 0, 2).Result()
	if err != nil {
		fmt.Printf("zrevrange failed, err:%v\n", err)
		return
	}
	for _, z := range ret {
		fmt.Println(z.Member, z.Score)
	}

	// 取95~100分的
	op := redis.ZRangeBy{
		Min: "95",
		Max: "100",
	}
	ret, err = rdb.ZRangeByScoreWithScores(zsetKey, op).Result()
	if err != nil {
		fmt.Printf("zrangebyscore failed, err:%v\n", err)
		return
	}
	for _, z := range ret {
		fmt.Println(z.Member, z.Score)
	}
}

输出结果如下:

$ ./06redis_demo 
zadd 0 succ.
Golang's score is 100.000000 now.
Golang 100
C/C++ 99
Java 98
JavaScript 97
Java 98
C/C++ 99
Golang 100

根据前缀获取Key

vals, err := rdb.Keys(ctx, "prefix*").Result()

执行自定义命令

res, err := rdb.Do(ctx, "set", "key", "value").Result()

按通配符删除key

当通配符匹配的key的数量不多时,可以使用Keys()得到所有的key在使用Del命令删除。 如果key的数量非常多的时候,我们可以搭配使用Scan命令和Del命令完成删除。

ctx := context.Background()
iter := rdb.Scan(ctx, 0, "prefix*", 0).Iterator()
for iter.Next(ctx) {
	err := rdb.Del(ctx, iter.Val()).Err()
	if err != nil {
		panic(err)
	}
}
if err := iter.Err(); err != nil {
	panic(err)
}

Pipeline

Pipeline 主要是一种网络优化。它本质上意味着客户端缓冲一堆命令并一次性将它们发送到服务器。这些命令不能保证在事务中执行。这样做的好处是节省了每个命令的网络往返时间(RTT)。

Pipeline 基本示例如下:

pipe := rdb.Pipeline()
incr := pipe.Incr("pipeline_counter")
pipe.Expire("pipeline_counter", time.Hour)
_, err := pipe.Exec()
fmt.Println(incr.Val(), err)

上面的代码相当于将以下两个命令一次发给redis server端执行,与不使用Pipeline相比能减少一次RTT。

INCR pipeline_counter
EXPIRE pipeline_counts 3600

也可以使用Pipelined

var incr *redis.IntCmd
_, err := rdb.Pipelined(func(pipe redis.Pipeliner) error {
	incr = pipe.Incr("pipelined_counter")
	pipe.Expire("pipelined_counter", time.Hour)
	return nil
})
fmt.Println(incr.Val(), err)

在某些场景下,当我们有多条命令要执行时,就可以考虑使用pipeline来优化。

事务

Redis是单线程的,因此单个命令始终是原子的,但是来自不同客户端的两个给定命令可以依次执行,例如在它们之间交替执行。但是,Multi/exec能够确保在multi/exec两个语句之间的命令之间没有其他客户端正在执行命令。

在这种场景我们需要使用TxPipelineTxPipeline总体上类似于上面的Pipeline,但是它内部会使用MULTI/EXEC包裹排队的命令。例如:

pipe := rdb.TxPipeline()
incr := pipe.Incr("tx_pipeline_counter")
pipe.Expire("tx_pipeline_counter", time.Hour)
_, err := pipe.Exec()
fmt.Println(incr.Val(), err)

上面代码相当于在一个RTT下执行了下面的redis命令:

MULTI
INCR pipeline_counter
EXPIRE pipeline_counts 3600
EXEC

还有一个与上文类似的TxPipelined方法,使用方法如下:

var incr *redis.IntCmd
_, err := rdb.TxPipelined(func(pipe redis.Pipeliner) error {
	incr = pipe.Incr("tx_pipelined_counter")
	pipe.Expire("tx_pipelined_counter", time.Hour)
	return nil
})
fmt.Println(incr.Val(), err)

Watch

在某些场景下,我们除了要使用MULTI/EXEC命令外,还需要配合使用WATCH命令。在用户使用WATCH命令监视某个键之后,直到该用户执行EXEC命令的这段时间里,如果有其他用户抢先对被监视的键进行了替换、更新、删除等操作,那么当用户尝试执行EXEC的时候,事务将失败并返回一个错误,用户可以根据这个错误选择重试事务或者放弃事务。

Watch(fn func(*Tx) error, keys ...string) error

Watch方法接收一个函数和一个或多个key作为参数。基本使用示例如下:

// 监视watch_count的值,并在值不变的前提下将其值+1
key := "watch_count"
err = client.Watch(func(tx *redis.Tx) error {
	n, err := tx.Get(key).Int()
	if err != nil && err != redis.Nil {
		return err
	}
	_, err = tx.Pipelined(func(pipe redis.Pipeliner) error {
		pipe.Set(key, n+1, 0)
		return nil
	})
	return err
}, key)

最后看一个V8版本官方文档中使用GET和SET命令以事务方式递增Key的值的示例,仅当Key的值不发生变化时提交一个事务。

func transactionDemo() {
	var (
		maxRetries   = 1000
		routineCount = 10
	)
	ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
	defer cancel()
	// Increment 使用GET和SET命令以事务方式递增Key的值
	increment := func(key string) error {
		// 事务函数
		txf := func(tx *redis.Tx) error {
			// 获得key的当前值或零值
			n, err := tx.Get(ctx, key).Int()
			if err != nil && err != redis.Nil {
				return err
			}
			// 实际的操作代码(乐观锁定中的本地操作)
			n++
			// 操作仅在 Watch 的 Key 没发生变化的情况下提交
			_, err = tx.TxPipelined(ctx, func(pipe redis.Pipeliner) error {
				pipe.Set(ctx, key, n, 0)
				return nil
			})
			return err
		}
		// 最多重试 maxRetries 次
		for i := 0; i < maxRetries; i++ {
			err := rdb.Watch(ctx, txf, key)
			if err == nil {
				// 成功
				return nil
			}
			if err == redis.TxFailedErr {
				// 乐观锁丢失 重试
				continue
			}
			// 返回其他的错误
			return err
		}
		return errors.New("increment reached maximum number of retries")
	}
	// 模拟 routineCount 个并发同时去修改 counter3 的值
	var wg sync.WaitGroup
	wg.Add(routineCount)
	for i := 0; i < routineCount; i++ {
		go func() {
			defer wg.Done()
			if err := increment("counter3"); err != nil {
				fmt.Println("increment error:", err)
			}
		}()
	}
	wg.Wait()
	n, err := rdb.Get(context.TODO(), "counter3").Int()
	fmt.Println("ended with", n, err)
}

以上就是golang连接redis库及基本操作示例过程的详细内容!

Golang 相关文章推荐
golang json数组拼接的实例
Apr 28 Golang
golang 定时任务方面time.Sleep和time.Tick的优劣对比分析
May 05 Golang
golang 实用库gotable的具体使用
Jul 01 Golang
浅谈GO中的Channel以及死锁的造成
Mar 18 Golang
Go语言实现一个简单的并发聊天室的项目实战
Mar 18 Golang
golang为什么要统一错误处理
Apr 03 Golang
Go归并排序算法的实现方法
Apr 06 Golang
golang连接MySQl使用sqlx库
Apr 14 Golang
Golang MatrixOne使用介绍和汇编语法
Apr 19 Golang
Golang 对es的操作实例
Apr 20 Golang
GoFrame gredis缓存DoVar Conn连接对象 自动序列化GoFrame gredisDo/DoVar方法Conn连接对象自动序列化/反序列化总结
Jun 14 Golang
golang操作redis的客户端包有多个比如redigo、go-redis
Apr 14 #Golang
Go语言grpc和protobuf
Golang流模式之grpc的四种数据流
Apr 13 #Golang
Golang数据类型和相互转换
Apr 12 #Golang
Go语言的协程上下文的几个方法和用法
Apr 11 #Golang
Golang 1.18 多模块Multi-Module工作区模式的新特性
Apr 11 #Golang
golang三种设计模式之简单工厂、方法工厂和抽象工厂
You might like
PHP 5.3新特性命名空间规则解析及高级功能
2010/03/11 PHP
PHP入门教程之数组用法汇总(创建,删除,遍历,排序等)
2016/09/11 PHP
php运行报错Call to undefined function curl_init()的最新解决方法
2016/11/20 PHP
Yii2实现多域名跨域同步登录退出
2017/02/04 PHP
PHP进阶学习之垃圾回收机制详解
2019/06/18 PHP
[JS]点出统计器
2020/10/11 Javascript
深入理解JQuery keyUp和keyDown的区别
2013/12/12 Javascript
JavaScript阻止回车提交表单的方法
2015/12/30 Javascript
JavaScript用构造函数如何获取变量的类型名
2016/12/23 Javascript
Vue在页面右上角实现可悬浮/隐藏的系统菜单
2018/05/04 Javascript
JavaScript new对象的四个过程实例浅析
2018/07/31 Javascript
对vux点击事件的优化详解
2018/08/28 Javascript
在vue中使用express-mock搭建mock服务的方法
2018/11/07 Javascript
Vue+Django项目部署详解
2019/05/30 Javascript
Vue利用Blob下载原生二进制数组文件
2019/09/25 Javascript
layui+SSM的数据表的增删改实例(利用弹框添加、修改)
2019/09/27 Javascript
Node.js web 应用如何封装到Docker容器中
2020/09/01 Javascript
python基于xml parse实现解析cdatasection数据
2014/09/30 Python
横向对比分析Python解析XML的四种方式
2016/03/30 Python
小白如何入门Python? 制作一个网站为例
2018/03/06 Python
python3+pyqt5+itchat微信定时发送消息的方法
2019/02/20 Python
解决pyinstaller打包发布后的exe文件打开控制台闪退的问题
2019/06/21 Python
Pandas DataFrame数据的更改、插入新增的列和行的方法
2019/06/25 Python
Django1.11配合uni-app发起微信支付的实现
2019/10/12 Python
Python 寻找局部最高点的实现
2019/12/05 Python
Python如何实现线程间通信
2020/07/30 Python
python批量生成条形码的示例
2020/10/10 Python
印度尼西亚在线时尚购物网站:ZALORA印尼
2016/08/02 全球购物
英国羊绒服装购物网站:Pure Collection
2018/10/22 全球购物
交通事故委托书范本(2篇)
2014/09/21 职场文书
龙门石窟导游词
2015/02/02 职场文书
统计员岗位职责范本
2015/04/14 职场文书
兴趣班停课通知
2015/04/24 职场文书
简单的辞职信范文(2016最新版)
2015/05/12 职场文书
pytorch 如何使用float64训练
2021/05/24 Python
修改MySQL的数据库引擎为INNODB的方法
2021/05/26 MySQL