Python破解极验滑动验证码详细步骤


Posted in Python onMay 21, 2021

极验滑动验证码

Python破解极验滑动验证码详细步骤

以上图片是最典型的要属于极验滑动认证了,极验官网:http://www.geetest.com/。

现在极验验证码已经更新到了 3.0 版本,截至 2017 年 7 月全球已有十六万家企业正在使用极验,每天服务响应超过四亿次,广泛应用于直播视频、金融服务、电子商务、游戏娱乐、政府企业等各大类型网站

对于这类验证,如果我们直接模拟表单请求,繁琐的认证参数与认证流程会让你蛋碎一地,我们可以用selenium驱动浏览器来解决这个问题,大致分为以下几个步骤

1、输入用户名,密码

2、点击按钮验证,弹出没有缺口的图

3、获得没有缺口的图片

4、点击滑动按钮,弹出有缺口的图

5、获得有缺口的图片

6、对比两张图片,找出缺口,即滑动的位移

7、按照人的行为行为习惯,把总位移切成一段段小的位移

8、按照位移移动

9、完成登录

实现

位移移动需要的基础知识

位移移动相当于匀变速直线运动,类似于小汽车从起点开始运行到终点的过程(首先为匀加速,然后再匀减速)。

Python破解极验滑动验证码详细步骤

其中a为加速度,且为恒量(即单位时间内的加速度是不变的),t为时间

Python破解极验滑动验证码详细步骤

Python破解极验滑动验证码详细步骤

位移移动的代码实现

def get_track(distance):
    '''
    拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速
    匀变速运动基本公式:
    ①v=v0+at
    ②s=v0t+(1/2)at²
    ③v²-v0²=2as

    :param distance: 需要移动的距离
    :return: 存放每0.2秒移动的距离
    '''
    # 初速度
    v=0
    # 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移
    t=0.1
    # 位移/轨迹列表,列表内的一个元素代表0.2s的位移
    tracks=[]
    # 当前的位移
    current=0
    # 到达mid值开始减速
    mid=distance * 4/5

    distance += 10  # 先滑过一点,最后再反着滑动回来

    while current < distance:
        if current < mid:
            # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细
            a = 2  # 加速运动
        else:
            a = -3 # 减速运动

        # 初速度
        v0 = v
        # 0.2秒时间内的位移
        s = v0*t+0.5*a*(t**2)
        # 当前的位置
        current += s
        # 添加到轨迹列表
        tracks.append(round(s))

        # 速度已经达到v,该速度作为下次的初速度
        v= v0+a*t

    # 反着滑动到大概准确位置
    for i in range(3):
       tracks.append(-2)
    for i in range(4):
       tracks.append(-1)
    return tracks

对比两张图片,找出缺口

def get_distance(image1,image2):
    '''
      拿到滑动验证码需要移动的距离
      :param image1:没有缺口的图片对象
      :param image2:带缺口的图片对象
      :return:需要移动的距离
      '''
    # print('size', image1.size)

    threshold = 50
    for i in range(0,image1.size[0]):  # 260
        for j in range(0,image1.size[1]):  # 160
            pixel1 = image1.getpixel((i,j))
            pixel2 = image2.getpixel((i,j))
            res_R = abs(pixel1[0]-pixel2[0]) # 计算RGB差
            res_G = abs(pixel1[1] - pixel2[1])  # 计算RGB差
            res_B = abs(pixel1[2] - pixel2[2])  # 计算RGB差
            if res_R > threshold and res_G > threshold and res_B > threshold:
                return i  # 需要移动的距离

获得图片

def merge_image(image_file,location_list):
    """
     拼接图片
    :param image_file:
    :param location_list:
    :return:
    """
    im = Image.open(image_file)
    im.save('code.jpg')
    new_im = Image.new('RGB',(260,116))
    # 把无序的图片 切成52张小图片
    im_list_upper = []
    im_list_down = []
    # print(location_list)
    for location in location_list:
        # print(location['y'])
        if location['y'] == -58: # 上半边
            im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x'])+10,116)))
        if location['y'] == 0:  # 下半边
            im_list_down.append(im.crop((abs(location['x']),0,abs(location['x'])+10,58)))

    x_offset = 0
    for im in im_list_upper:
        new_im.paste(im,(x_offset,0))  # 把小图片放到 新的空白图片上
        x_offset += im.size[0]

    x_offset = 0
    for im in im_list_down:
        new_im.paste(im,(x_offset,58))
        x_offset += im.size[0]
    new_im.show()
    return new_im

def get_image(driver,div_path):
    '''
    下载无序的图片  然后进行拼接 获得完整的图片
    :param driver:
    :param div_path:
    :return:
    '''
    time.sleep(2)
    background_images = driver.find_elements_by_xpath(div_path)
    location_list = []
    for background_image in background_images:
        location = {}
        result = re.findall('background-image: url\("(.*?)"\); background-position: (.*?)px (.*?)px;',background_image.get_attribute('style'))
        # print(result)
        location['x'] = int(result[0][1])
        location['y'] = int(result[0][2])

        image_url = result[0][0]
        location_list.append(location)

    print('==================================')
    image_url = image_url.replace('webp','jpg')
    # '替换url http://static.geetest.com/pictures/gt/579066de6/579066de6.webp'
    image_result = requests.get(image_url).content
    # with open('1.jpg','wb') as f:
    #     f.write(image_result)
    image_file = BytesIO(image_result) # 是一张无序的图片
    image = merge_image(image_file,location_list)

    return image

按照位移移动

print('第一步,点击滑动按钮')
    ActionChains(driver).click_and_hold(on_element=element).perform()  # 点击鼠标左键,按住不放
    time.sleep(1)
    print('第二步,拖动元素')
    for track in track_list:
         ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 鼠标移动到距离当前位置(x,y)
    if l<100:
        ActionChains(driver).move_by_offset(xoffset=-2, yoffset=0).perform()
    else:
        ActionChains(driver).move_by_offset(xoffset=-5, yoffset=0).perform()
    time.sleep(1)
    print('第三步,释放鼠标')
    ActionChains(driver).release(on_element=element).perform()

详细代码

from selenium import webdriver
from selenium.webdriver.support.ui import WebDriverWait # 等待元素加载的
from selenium.webdriver.common.action_chains import ActionChains  #拖拽
from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import TimeoutException, NoSuchElementException
from selenium.webdriver.common.by import By
from PIL import Image
import requests
import time
import re
import random
from io import BytesIO


def merge_image(image_file,location_list):
    """
     拼接图片
    :param image_file:
    :param location_list:
    :return:
    """
    im = Image.open(image_file)
    im.save('code.jpg')
    new_im = Image.new('RGB',(260,116))
    # 把无序的图片 切成52张小图片
    im_list_upper = []
    im_list_down = []
    # print(location_list)
    for location in location_list:
        # print(location['y'])
        if location['y'] == -58: # 上半边
            im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x'])+10,116)))
        if location['y'] == 0:  # 下半边
            im_list_down.append(im.crop((abs(location['x']),0,abs(location['x'])+10,58)))

    x_offset = 0
    for im in im_list_upper:
        new_im.paste(im,(x_offset,0))  # 把小图片放到 新的空白图片上
        x_offset += im.size[0]

    x_offset = 0
    for im in im_list_down:
        new_im.paste(im,(x_offset,58))
        x_offset += im.size[0]
    new_im.show()
    return new_im

def get_image(driver,div_path):
    '''
    下载无序的图片  然后进行拼接 获得完整的图片
    :param driver:
    :param div_path:
    :return:
    '''
    time.sleep(2)
    background_images = driver.find_elements_by_xpath(div_path)
    location_list = []
    for background_image in background_images:
        location = {}
        result = re.findall('background-image: url\("(.*?)"\); background-position: (.*?)px (.*?)px;',background_image.get_attribute('style'))
        # print(result)
        location['x'] = int(result[0][1])
        location['y'] = int(result[0][2])

        image_url = result[0][0]
        location_list.append(location)

    print('==================================')
    image_url = image_url.replace('webp','jpg')
    # '替换url http://static.geetest.com/pictures/gt/579066de6/579066de6.webp'
    image_result = requests.get(image_url).content
    # with open('1.jpg','wb') as f:
    #     f.write(image_result)
    image_file = BytesIO(image_result) # 是一张无序的图片
    image = merge_image(image_file,location_list)

    return image

def get_track(distance):
    '''
    拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速
    匀变速运动基本公式:
    ①v=v0+at
    ②s=v0t+(1/2)at²
    ③v²-v0²=2as

    :param distance: 需要移动的距离
    :return: 存放每0.2秒移动的距离
    '''
    # 初速度
    v=0
    # 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移
    t=0.2
    # 位移/轨迹列表,列表内的一个元素代表0.2s的位移
    tracks=[]
    # 当前的位移
    current=0
    # 到达mid值开始减速
    mid=distance * 7/8

    distance += 10  # 先滑过一点,最后再反着滑动回来
    # a = random.randint(1,3)
    while current < distance:
        if current < mid:
            # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细
            a = random.randint(2,4)  # 加速运动
        else:
            a = -random.randint(3,5) # 减速运动

        # 初速度
        v0 = v
        # 0.2秒时间内的位移
        s = v0*t+0.5*a*(t**2)
        # 当前的位置
        current += s
        # 添加到轨迹列表
        tracks.append(round(s))

        # 速度已经达到v,该速度作为下次的初速度
        v= v0+a*t

    # 反着滑动到大概准确位置
    for i in range(4):
       tracks.append(-random.randint(2,3))
    for i in range(4):
       tracks.append(-random.randint(1,3))
    return tracks


def get_distance(image1,image2):
    '''
      拿到滑动验证码需要移动的距离
      :param image1:没有缺口的图片对象
      :param image2:带缺口的图片对象
      :return:需要移动的距离
      '''
    # print('size', image1.size)

    threshold = 50
    for i in range(0,image1.size[0]):  # 260
        for j in range(0,image1.size[1]):  # 160
            pixel1 = image1.getpixel((i,j))
            pixel2 = image2.getpixel((i,j))
            res_R = abs(pixel1[0]-pixel2[0]) # 计算RGB差
            res_G = abs(pixel1[1] - pixel2[1])  # 计算RGB差
            res_B = abs(pixel1[2] - pixel2[2])  # 计算RGB差
            if res_R > threshold and res_G > threshold and res_B > threshold:
                return i  # 需要移动的距离



def main_check_code(driver, element):
    """
     拖动识别验证码
    :param driver: 
    :param element: 
    :return: 
    """
    image1 = get_image(driver, '//div[@class="gt_cut_bg gt_show"]/div')
    image2 = get_image(driver, '//div[@class="gt_cut_fullbg gt_show"]/div')
    # 图片上 缺口的位置的x坐标

    # 2 对比两张图片的所有RBG像素点,得到不一样像素点的x值,即要移动的距离
    l = get_distance(image1, image2)
    print('l=',l)
    # 3 获得移动轨迹
    track_list = get_track(l)
    print('第一步,点击滑动按钮')
    ActionChains(driver).click_and_hold(on_element=element).perform()  # 点击鼠标左键,按住不放
    time.sleep(1)
    print('第二步,拖动元素')
    for track in track_list:
         ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()  # 鼠标移动到距离当前位置(x,y)     time.sleep(0.002)
    # if l>100:

    ActionChains(driver).move_by_offset(xoffset=-random.randint(2,5), yoffset=0).perform()
    time.sleep(1)
    print('第三步,释放鼠标')
    ActionChains(driver).release(on_element=element).perform()
    time.sleep(5)


def main_check_slider(driver):
    """
    检查滑动按钮是否加载
    :param driver: 
    :return: 
    """
    while True:
        try :
            driver.get('http://www.cnbaowen.net/api/geetest/')
            element = WebDriverWait(driver, 30, 0.5).until(EC.element_to_be_clickable((By.CLASS_NAME, 'gt_slider_knob')))
            if element:
                return element
        except TimeoutException as e:
            print('超时错误,继续')
            time.sleep(5)


if __name__ == '__main__':
    try:
        count = 6  # 最多识别6次
        driver = webdriver.Chrome()
        # 等待滑动按钮加载完成
        element = main_check_slider(driver)
        while count > 0:
            main_check_code(driver,element)
            time.sleep(2)
            try:
                success_element = (By.CSS_SELECTOR, '.gt_holder .gt_ajax_tip.gt_success')
                # 得到成功标志
                print('suc=',driver.find_element_by_css_selector('.gt_holder .gt_ajax_tip.gt_success'))
                success_images = WebDriverWait(driver, 20).until(EC.presence_of_element_located(success_element))
                if success_images:
                    print('成功识别!!!!!!')
                    count = 0
                    break
            except NoSuchElementException as e:
                print('识别错误,继续')
                count -= 1
                time.sleep(2)
        else:
            print('too many attempt check code ')
            exit('退出程序')
    finally:
        driver.close()

成功识别标志css

Python破解极验滑动验证码详细步骤

以上就是Python破解极验滑动验证码的详细内容,更多关于Python极验滑动验证码的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python Web服务器Tornado使用小结
May 06 Python
用Python的pandas框架操作Excel文件中的数据教程
Mar 31 Python
django使用xlwt导出excel文件实例代码
Feb 06 Python
基于Python Numpy的数组array和矩阵matrix详解
Apr 04 Python
Python实现矩阵相乘的三种方法小结
Jul 26 Python
详解配置Django的Celery异步之路踩坑
Nov 25 Python
Python实现获取汉字偏旁部首的方法示例【测试可用】
Dec 18 Python
Python基础之循环语句用法示例【for、while循环】
Mar 23 Python
Python Django基础二之URL路由系统
Jul 18 Python
pytorch中nn.Conv1d的用法详解
Dec 31 Python
给 TensorFlow 变量进行赋值的方式
Feb 10 Python
Python定时任务APScheduler安装及使用解析
Aug 07 Python
详解python字符串驻留技术
Jupyter notebook 更改文件打开的默认路径操作
深入探讨opencv图像矫正算法实战
python正则表达式re.search()的基本使用教程
pandas:get_dummies()与pd.factorize()的用法及区别说明
python spilt()分隔字符串的实现示例
教你用python实现一个无界面的小型图书管理系统
You might like
php中的一些数组排序方法分享
2012/07/20 PHP
通过PHP current函数获取未知字符键名数组第一个元素的值
2013/06/24 PHP
ThinkPHP验证码使用简明教程
2014/03/05 PHP
php大小写转换函数(strtolower、strtoupper)用法介绍
2017/11/17 PHP
PHP根据树的前序遍历和中序遍历构造树并输出后序遍历的方法
2017/11/10 PHP
HTML中Select不用Disabled实现ReadOnly的效果
2008/04/07 Javascript
dojo学习第一天 Tab选项卡 实现
2011/08/28 Javascript
jquery.pagination.js 无刷新分页实现步骤分享
2012/05/23 Javascript
浅析jQuery(function(){})与(function(){})(jQuery)之间的区别
2014/01/09 Javascript
js实现字符串的16进制编码不加密
2014/04/25 Javascript
js控制文本框只输入数字和小数点的方法
2015/03/10 Javascript
angularjs在ng-repeat中使用ng-model遇到的问题
2016/01/21 Javascript
jQuery实现点击弹出背景变暗遮罩效果实例代码
2016/06/24 Javascript
Javascript 调用 ActionScript 的简单方法
2016/09/22 Javascript
详解jQuery插件开发方式
2016/11/22 Javascript
详解webpack-dev-server 设置反向代理解决跨域问题
2018/04/18 Javascript
Vue实现table上下移动功能示例
2019/02/21 Javascript
用Python进行一些简单的自然语言处理的教程
2015/03/31 Python
python3新特性函数注释Function Annotations用法分析
2016/07/28 Python
pandas修改DataFrame列名的实现方法
2019/02/22 Python
python中的colorlog库使用详解
2019/07/05 Python
python函数的作用域及关键字详解
2019/08/20 Python
Python 获取指定文件夹下的目录和文件的实现
2019/08/30 Python
pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率
2020/01/02 Python
python opencv进行图像拼接
2020/03/27 Python
详解使用Python写一个向数据库填充数据的小工具(推荐)
2020/09/11 Python
浅析HTML5:'data-'属性的作用
2018/01/23 HTML / CSS
应届生财务管理求职信
2013/11/06 职场文书
毕业生大学生活自我总结
2014/01/31 职场文书
《社戏》教学反思
2014/04/15 职场文书
拓展训练激励口号
2014/06/17 职场文书
党员干部群众路线教育实践活动个人对照检查材料
2014/09/23 职场文书
2015年秋季学校开学标语
2015/07/16 职场文书
python 如何在list中找Topk的数值和索引
2021/05/20 Python
Redis 的查询很快的原因解析及Redis 如何保证查询的高效
2022/03/16 Redis
Python可视化神器pyecharts之绘制箱形图
2022/07/07 Python