深入探讨opencv图像矫正算法实战


Posted in Python onMay 21, 2021

摘要

在机器视觉中,对于图像的处理有时候因为放置的原因导致ROI区域倾斜,这个时候我们会想办法把它纠正为正确的角度视角来,方便下一步的布局分析与文字识别,这个时候通过透视变换就可以取得比较好的裁剪效果。

本次实战,对于图像的矫正使用了两种矫正思路:

  • 针对边缘比较明显的图像,使用基于轮廓提取的矫正算法。
  • 针对边缘不明显,但是排列整齐的文本图像,使用了基于霍夫直线探测的矫正算法。

基于轮廓提取的矫正算法

整体思路:

  • 图片灰度化,二值化
  • 检测轮廓,并筛选出目标轮廓(通过横纵比或面积去除干扰轮廓)
  • 获取目标轮廓的最小外接矩形
  • 获取最小外接矩形的四顶点,并定义矫正图像后的四顶点
  • 透视变换(四点变换)

opencv实现(分解步骤):

(一)图片灰度化,二值化(开运算,消除噪点)

Mat src = imread("D:/opencv练习图片/图片矫正.png");
    imshow("原图片", src);
    // 二值图像
    Mat gray, binary;
    cvtColor(src, gray, COLOR_BGR2GRAY);
    threshold(gray, binary, 0, 255, THRESH_BINARY_INV| THRESH_OTSU);
    imshow("二值化", binary);
    // 定义结构元素
    Mat se = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
    morphologyEx(binary, binary, MORPH_OPEN, se);
    imshow("开运算", binary);

深入探讨opencv图像矫正算法实战

深入探讨opencv图像矫正算法实战

注意:由于原图像背景是白色,因此二值化时候要用THRESH_BINARY_INV

(二)提取轮廓,筛选轮廓

// 寻找最大轮廓
    vector<vector<Point>> contours;
    findContours(binary, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE);
    int index = -1;
    int max = 0;
    for (size_t i = 0; i < contours.size(); i++) 
    {
        double area = contourArea(contours[i]);
        if (area > max) 
        {
            max = area;
            index = i;
        }
    }

(三)求取最小外接矩形以及四顶点坐标,并定义变换后的四顶点坐标

// 寻找最小外接矩形
    RotatedRect rect = minAreaRect(contours[index]);    
    Point2f srcpoint[4];//存放变换前四顶点
    Point2f dstpoint[4];//存放变换后四顶点
    rect.points(srcpoint);//获取最小外接矩形四顶点坐标
    //显示顶点
    for (size_t i = 0; i < 4; i++)
    {
        circle(src, srcpoint[i], 5, Scalar(0, 0, 255),-1);//-1表示填充
    }
    imshow("顶点坐标", src);
    //获取外接矩形宽高
    float width = rect.size.width;
    float height = rect.size.height;
    //定义矫正后四顶点
    dstpoint[0]= Point2f(0, height);
    dstpoint[1] = Point2f(0, 0);
    dstpoint[2] = Point2f(width, 0);
    dstpoint[3] = Point2f(width, height);

? 这里需要注意的是:

RotatedRect 类的矩形返回的是矩形的中心坐标,倾斜角度。

Rect类的矩形返回的是矩形的左上角坐标,宽,高。因此要获取RotatedRect 类的矩形的宽,高就要用:

//获取外接矩形宽高
    float width = rect.size.width;
    float height = rect.size.height;

获取RotatedRect 类四顶点坐标的顺序依次是:左下-左上-右上-右下(可通过显示顶点依次查看)

对应矫正后的四顶点就是:(0,height)-(0,0)-(width,0)-(width,height)

(四)透视变换

// 透视变换
    Mat M = getPerspectiveTransform(srcpoint, dstpoint);
    Mat result = Mat::zeros(Size(width, height), CV_8UC3);
    warpPerspective(src, result, M, result.size());
    imshow("矫正结果", result);

深入探讨opencv图像矫正算法实战

深入探讨opencv图像矫正算法实战

基于霍夫直线探测的矫正算法

对于文本图像(如图),它没有明显的轮廓边缘去求四顶点。但是经过深入分析,可以发现:文本的每一行文字都是呈一条直线,而且这些直线都是平行的!

深入探讨opencv图像矫正算法实战

利用这个特征就可以实现基于霍夫直线探测的矫正算法:

用霍夫线变换探测出图像中的所有直线计算出每条直线的倾斜角,求他们的平均值根据倾斜角旋转矫正

?先来看看什么是霍夫变换:

霍夫变换在检测各种形状的的技术中非常流行,如果你要检测的形状可以用数学表达式写出,你就可以是使用霍夫变换检测它。

霍夫变换的直线检测简单来说就是在空间坐标系和映射到另外一个参数空间,将空间坐标系中的每一个点映射到另外一个参数空间中的线,通过该参数空间中所有线的交叉次数得到实际空间坐标系中的直线。

在OpenCV中,使用Hough变换的直线检测在函数HoughLines和HoughLinesP中实现。

HoughLines函数(标准霍夫变换)

从平面坐标转换到霍夫空间,最终输出是找到直线的极坐标(r,θ)

HoughLines(
InputArray src,        // 输入图像,必须CV_8U的二值图像(常用canny处理后的二值图像)
OutputArray lines,     // 输出的极坐标来表示直线
double rho,            // 步长(常为1)
double theta,          //角度,(一般是CV_PI/180)
int threshold,         // 阈值,只有获得足够交点的极坐标点才被看成是直线
double min_theta=0,   // 表示角度扫描范围 0 ~180之间, 默认即可
double max_theta=CV_PI) 
// 一般情况是有经验的开发者使用,需要自己反变换到平面空间

HoughLinesP函数(霍夫变换直线概率)

从平面坐标转换到霍夫空间,最终输出是找到直线的起点和终点(直角坐标系)

HoughLinesP(
InputArray src, // 输入图像,必须CV_8U的二值图像
OutputArray lines, // 输出找到直线的两点
double rho, // 步长(半径,常设为1)
double theta, //角度,一般取值CV_PI/180
Int threshold, // 阈值,累计次数必须达到的值,一般为150
double minLineLength=0,// 最小直线长度,一般为50
double maxLineGap=0)// 最大间隔,一般为10

opencv实现(分解步骤):

(一)图片灰度化,Canny边缘提取

Mat src, src_edge, src_gray,src_rotate;
    double angle;
    src = imread("D:/opencv练习图片/文本矫正.png");
    imshow("文本图片", src);
    cvtColor(src, src_gray, COLOR_RGB2GRAY);
    Canny(src_gray, src_edge, 50, 200, 3);
    imshow("canny", src_edge);

深入探讨opencv图像矫正算法实战

深入探讨opencv图像矫正算法实战

(二) 霍夫直线检测(HoughLines函数)并显示

//通过霍夫变换检测直线
    vector<Vec2f> plines;
    //第5个参数就是阈值,阈值越大,检测精度越高
    HoughLines(src_edge, plines, 1, CV_PI / 180, 200, 0, 0);
    cout << plines.size() << endl;
    //由于图像不同,阈值不好设定,因为阈值设定过高导致无法检测直线,阈值过低直线太多,速度很慢
    //所以根据阈值由大到小设置了三个阈值,如果经过大量试验后,可以固定一个适合的阈值。
    
    float sum = 0;
    //依次画出每条线段
    for (size_t i = 0; i < plines.size(); i++)
    {
        float rho = plines[i][0];
        float theta = plines[i][1];
        Point pt1, pt2;
        double a = cos(theta), b = sin(theta);
        double x0 = a * rho, y0 = b * rho;
        pt1.x = cvRound(x0 + 1000 * (-b));//cvRound四舍五入
        pt1.y = cvRound(y0 + 1000 * (a));
        pt2.x = cvRound(x0 - 1000 * (-b));
        pt2.y = cvRound(y0 - 1000 * (a));
        sum += theta;
        line(src_gray, pt1, pt2, Scalar(55, 100, 195), 1, LINE_AA);//Scalar函数用于调节线段颜色         
        imshow("直线探测效果图", src_gray);
        float average = sum / plines.size(); //对所有角度求平均,这样做旋转效果会更好
        angle = DegreeTrans(average) - 90;
    }

深入探讨opencv图像矫正算法实战

?核心代码分析:

由于需要求解直线的倾斜角度,因此这里使用了HoughLines函数,返回的是直线的步长和弧度(极坐标系下)

通过极坐标系下的步长和弧度,可以转换到直接坐标系下的两点坐标,然后显示。(原理如图)

深入探讨opencv图像矫正算法实战

(三)根据倾斜角度,进行放射变换(逆时针旋转矫正)

//旋转中心为图像中心    
    Point2f center;
    center.x = float(src.cols / 2.0);
    center.y = float(src.rows / 2.0);
    int length = 0;
    length = sqrt(src.cols*src.cols + src.rows*src.rows);
    Mat M = getRotationMatrix2D(center, angle, 1);
    warpAffine(src, src_rotate, M, Size(length, length), 1, 0, Scalar(255, 255, 255));//仿射变换,背景色填充为白色  
    imshow("矫正后", src_rotate);

深入探讨opencv图像矫正算法实战

到此这篇关于深入探讨opencv图像矫正算法实战的文章就介绍到这了,更多相关opencv图像矫正内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python删除windows垃圾文件的方法
Jul 14 Python
Python中最大最小赋值小技巧(分享)
Dec 23 Python
Python读取mat文件,并转为csv文件的实例
Jul 04 Python
python 魔法函数实例及解析
Sep 25 Python
Python实现二叉树的最小深度的两种方法
Sep 30 Python
利用Python绘制有趣的万圣节南瓜怪效果
Oct 31 Python
Python的几种主动结束程序方式
Nov 22 Python
TensorFlow使用Graph的基本操作的实现
Apr 22 Python
使用matplotlib的pyplot模块绘图的实现示例
Jul 12 Python
Django admin组件的使用
Oct 24 Python
使用Python解析Chrome浏览器书签的示例
Nov 13 Python
Python如何导出导入所有依赖包详解
Jun 08 Python
python正则表达式re.search()的基本使用教程
pandas:get_dummies()与pd.factorize()的用法及区别说明
python spilt()分隔字符串的实现示例
教你用python实现一个无界面的小型图书管理系统
一篇文章带你搞懂Python类的相关知识
Python深度学习之Pytorch初步使用
我对PyTorch dataloader里的shuffle=True的理解
You might like
PHP魔术方法__GET、__SET使用实例
2014/11/25 PHP
PHP网络操作函数汇总
2015/05/18 PHP
CI框架整合smarty步骤详解
2016/05/19 PHP
Laravel如何创建服务器提供者实例代码
2019/04/15 PHP
JS延迟加载(setTimeout) JS最后加载
2010/07/15 Javascript
javascript实现禁止复制网页内容
2014/12/16 Javascript
JS获取各种宽度、高度的简单介绍
2014/12/19 Javascript
详解AngularJS中自定义指令的使用
2015/06/17 Javascript
不想让浏览器运行javascript脚本的方法
2015/11/20 Javascript
jquery+php实现滚动的数字特效
2015/11/29 Javascript
JS组件Bootstrap ContextMenu右键菜单使用方法
2016/04/17 Javascript
Jquery获取当前城市的天气信息
2016/08/05 Javascript
vue中渐进过渡效果实现
2016/10/27 Javascript
解决VUEX刷新的时候出现数据消失
2017/07/03 Javascript
ui-router中使用ocLazyLoad和resolve的具体方法
2017/10/18 Javascript
详解angularjs 学习之 scope作用域
2018/01/15 Javascript
[05:36]DOTA2 2015国际邀请赛中国区预选赛第四日TOP10
2015/05/29 DOTA
Python OpenCV处理图像之图像直方图和反向投影
2018/07/10 Python
Python面向对象程序设计之类和对象、实例变量、类变量用法分析
2020/03/23 Python
如何学习Python time模块
2020/06/03 Python
Python with语句用法原理详解
2020/07/03 Python
html5中的input新属性range使用记录
2014/09/05 HTML / CSS
美国休闲服装品牌:Express
2016/09/24 全球购物
美国玛丽莎收藏奢华时尚商店:Marissa Collections
2016/11/21 全球购物
斯图尔特·韦茨曼鞋加拿大官网:Stuart Weitzman加拿大
2019/10/13 全球购物
澳大利亚在线批发商:Simply Wholesale
2021/02/24 全球购物
护理专业大学生自我推荐信
2014/01/25 职场文书
餐厅楼面主管岗位职责范本
2014/02/16 职场文书
法律进社区实施方案
2014/03/21 职场文书
中学生期中自我鉴定
2014/04/20 职场文书
2015年社区纪检工作总结
2015/04/21 职场文书
幼儿园开学家长寄语(2015秋季)
2015/05/27 职场文书
2016情人节宣传语
2015/07/14 职场文书
Python 用户输入和while循环的操作
2021/05/23 Python
MySQL令人大跌眼镜的隐式转换
2021/08/23 MySQL
日本动漫十大公认神作:第五现已全网禁播,《死亡笔记》在榜
2022/03/18 日漫