FP-growth算法发现频繁项集——构建FP树


Posted in Python onJune 24, 2021

  FP代表频繁模式(Frequent Pattern),算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

FP树表示法

  FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

  一颗FP树如下图所示:

FP-growth算法发现频繁项集——构建FP树

  通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

  FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

  为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。

FP-growth算法发现频繁项集——构建FP树

构建FP树

  现在有如下数据:

FP-growth算法发现频繁项集——构建FP树  

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

  第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。

FP-growth算法发现频繁项集——构建FP树

第一次扫描的后的结果

  第二次扫描,构造FP树。

  参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

FP-growth算法发现频繁项集——构建FP树

事务001,{z,x}

FP-growth算法发现频繁项集——构建FP树

事务002,{z,x,y,t,s}

FP-growth算法发现频繁项集——构建FP树

事务003,{z}

FP-growth算法发现频繁项集——构建FP树

事务004,{x,s,r}

FP-growth算法发现频繁项集——构建FP树

事务005,{z,x,y,t,r}

FP-growth算法发现频繁项集——构建FP树

事务006,{z,x,y,t,s}

  从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

  代码如下:

def loadSimpDat():
    simpDat = [['r', 'z', 'h', 'j', 'p'],
               ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
               ['z'],
               ['r', 'x', 'n', 'o', 's'],
               ['y', 'r', 'x', 'z', 'q', 't', 'p'],
               ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
    return simpDat
def createInitSet(dataSet):
    retDict = {}
    for trans in dataSet:
        fset = frozenset(trans)
        retDict.setdefault(fset, 0)
        retDict[fset] += 1
    return retDict
class treeNode:
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue
        self.count = numOccur
        self.nodeLink = None
        self.parent = parentNode
        self.children = {}
    def inc(self, numOccur):
        self.count += numOccur
    def disp(self, ind=1):
        print('   ' * ind, self.name, ' ', self.count)
        for child in self.children.values():
            child.disp(ind + 1)

def createTree(dataSet, minSup=1):
    headerTable = {}
    #此一次遍历数据集, 记录每个数据项的支持度
    for trans in dataSet:
        for item in trans:
            headerTable[item] = headerTable.get(item, 0) + 1
    #根据最小支持度过滤
    lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))
    for k in lessThanMinsup: del(headerTable[k])
    freqItemSet = set(headerTable.keys())
    #如果所有数据都不满足最小支持度,返回None, None
    if len(freqItemSet) == 0:
        return None, None
    for k in headerTable:
        headerTable[k] = [headerTable[k], None]
    retTree = treeNode('φ', 1, None)
    #第二次遍历数据集,构建fp-tree
    for tranSet, count in dataSet.items():
        #根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度
        localD = {}
        for item in tranSet:
            if item in freqItemSet:
                localD[item] = headerTable[item][0]
        if len(localD) > 0:
            #根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] desc
            orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]
            updateTree(orderedItems, retTree, headerTable, count)
    return retTree, headerTable

def updateTree(items, inTree, headerTable, count):
    if items[0] in inTree.children:  # check if orderedItems[0] in retTree.children
        inTree.children[items[0]].inc(count)  # incrament count
    else:  # add items[0] to inTree.children
        inTree.children[items[0]] = treeNode(items[0], count, inTree)
        if headerTable[items[0]][1] == None:  # update header table
            headerTable[items[0]][1] = inTree.children[items[0]]
        else:
            updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
    if len(items) > 1:  # call updateTree() with remaining ordered items
        updateTree(items[1:], inTree.children[items[0]], headerTable, count)

def updateHeader(nodeToTest, targetNode):  # this version does not use recursion
    while (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!
        nodeToTest = nodeToTest.nodeLink
    nodeToTest.nodeLink = targetNode
simpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

  上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

  控制台信息:

FP-growth算法发现频繁项集——构建FP树

项的顺序对FP树的影响

  值得注意的是,对项的关键字排序将会影响FP树的结构。下面两图是相同训练集生成的FP树,图1除了按照最小支持度排序外,未对项做任何处理;图2则将项按照关键字进行了降序排序。树的结构也将影响后续发现频繁项的结果。

FP-growth算法发现频繁项集——构建FP树

图1 未对项的关键字排序

FP-growth算法发现频繁项集——构建FP树

图2 对项的关键字降序排序

总结  

本派文章就到这里了,下篇继续,介绍如何发现频繁项集。希望能给你带来帮助,也希望您能够多多关注三水点靠木的更多内容!

Python 相关文章推荐
Python的Flask框架中SQLAlchemy使用时的乱码问题解决
Nov 07 Python
Python虚拟环境virtualenv的安装与使用详解
May 28 Python
简单了解OpenCV是个什么东西
Nov 10 Python
全面了解Nginx, WSGI, Flask之间的关系
Jan 09 Python
Python中的defaultdict与__missing__()使用介绍
Feb 03 Python
python文件操作之批量修改文件后缀名的方法
Aug 10 Python
使用Python获取网段IP个数以及地址清单的方法
Nov 01 Python
Python opencv实现人眼/人脸识别以及实时打码处理
Apr 29 Python
python 实现保存最新的三份文件,其余的都删掉
Dec 22 Python
Python程序控制语句用法实例分析
Jan 14 Python
pytorch实现从本地加载 .pth 格式模型
Feb 14 Python
python实现移动木板小游戏
Oct 09 Python
python ansible自动化运维工具执行流程
关于python中readlines函数的参数hint的相关知识总结
详解Python为什么不用设计模式
linux中nohup和后台运行进程查看及终止
Jun 24 #Python
Python面向对象之成员相关知识总结
Jun 24 #Python
Python面向对象之内置函数相关知识总结
Jun 24 #Python
python面向对象版学生信息管理系统
You might like
需要发散思维学习PHP
2009/06/29 PHP
10个可以简化php开发过程的MySQL工具
2010/04/11 PHP
PHP操作Memcache实例介绍
2013/06/14 PHP
PHP中字符安全过滤函数使用小结
2015/02/25 PHP
PHP弹出对话框技巧详细解读
2015/09/26 PHP
jquery实现表格奇数偶数行不同样式(有图为证及实现代码)
2013/01/23 Javascript
javascript制作坦克大战全纪录(2)
2014/11/27 Javascript
node.js中的fs.fchmod方法使用说明
2014/12/16 Javascript
jQuery实现图片渐入渐出切换展示效果
2015/08/15 Javascript
easyUI实现类似搜索框关键词自动提示功能示例代码
2016/12/27 Javascript
es7学习教程之fetch解决异步嵌套问题的方法示例
2017/07/21 Javascript
Vue集成Iframe页面的方法示例
2017/12/12 Javascript
JS自定义滚动条效果
2020/03/13 Javascript
深入理解javascript中的this
2021/02/08 Javascript
[03:03]2014DOTA2国际邀请赛 EG战队专访
2014/07/12 DOTA
Python中的jquery PyQuery库使用小结
2014/05/13 Python
python中的break、continue、exit()、pass全面解析
2017/08/05 Python
使用Python的package机制如何简化utils包设计详解
2017/12/11 Python
python 每天如何定时启动爬虫任务(实现方法分享)
2018/05/21 Python
python matplotlib.pyplot.plot()参数用法
2020/04/14 Python
Numpy中np.random.rand()和np.random.randn() 用法和区别详解
2020/10/23 Python
CSS3实现多重边框的方法总结
2016/05/31 HTML / CSS
全球速卖通巴西站点:Aliexpress巴西
2016/08/24 全球购物
皇家道尔顿官网:Royal Doulton
2017/12/06 全球购物
英国现代绅士品牌:Hackett
2017/12/17 全球购物
网站客服岗位职责
2014/04/05 职场文书
安全生产承诺书范文
2014/05/22 职场文书
管理工程专业求职信
2014/08/10 职场文书
装饰公司活动策划方案
2014/08/23 职场文书
生活小常识广播稿
2014/09/16 职场文书
2014年乡镇卫生院工作总结
2014/11/24 职场文书
老干部座谈会主持词
2015/07/03 职场文书
《槐乡的孩子》教学反思
2016/02/20 职场文书
MySQL 数据类型选择原则
2021/05/27 MySQL
解决Swagger2返回map复杂结构不能解析的问题
2021/07/02 Java/Android
关于python类SortedList详解
2021/09/04 Python