Python实现聚类K-means算法详解


Posted in Python onJuly 15, 2022

K-means(K均值)算法是最简单的一种聚类算法,它期望最小化平方误差

Python实现聚类K-means算法详解

:为避免运行时间过长,通常设置一个最大运行轮数或最小调整幅度阈值,若到达最大轮数或调整幅度小于阈值,则停止运行。

下面我们用python来实现一下K-means算法:我们先尝试手动实现这个算法,再用sklearn库中的KMeans类来实现。数据我们采用《机器学习》的西瓜数据(P202表9.1):

# 下面的内容保存在 melons.txt 中
# 第一列为西瓜的密度;第二列为西瓜的含糖率。我们要把这30个西瓜分为3类
0.697 0.460
0.774 0.376
0.634 0.264
0.608 0.318
0.556 0.215
0.403 0.237
0.481 0.149
0.437 0.211
0.666 0.091
0.243 0.267
0.245 0.057
0.343 0.099
0.639 0.161
0.657 0.198
0.360 0.370
0.593 0.042
0.719 0.103
0.359 0.188
0.339 0.241
0.282 0.257
0.748 0.232
0.714 0.346
0.483 0.312
0.478 0.437
0.525 0.369
0.751 0.489
0.532 0.472
0.473 0.376
0.725 0.445
0.446 0.459

手动实现

我们用到的库有matplotlibnumpy,如果没有需要先用pip安装一下。

import random
import numpy as np
import matplotlib.pyplot as plt

下面定义一些数据:

k = 3 # 要分的簇数
rnd = 0 # 轮次,用于控制迭代次数(见上文)
ROUND_LIMIT = 100 # 轮次的上限
THRESHOLD = 1e-10 # 单轮改变距离的阈值,若改变幅度小于该阈值,算法终止
melons = [] # 西瓜的列表
clusters = [] # 簇的列表,clusters[i]表示第i簇包含的西瓜

从melons.txt读取数据,保存在列表中:

f = open('melons.txt', 'r')
for line in f:
	# 把字符串转化为numpy中的float64类型
    melons.append(np.array(line.split(' '), dtype = np.string_).astype(np.float64))

从 m m m个数据中随机挑选出 k k k个,对应上面算法的第 1 1 1行:

# random的sample函数从列表中随机挑选出k个样本(不重复)。我们在这里把这些样本作为均值向量
mean_vectors = random.sample(melons, k)

下面是算法的主要部分。

# 这个while对应上面算法的2-17行
while True:
    rnd += 1 # 轮次增加
    change = 0 # 把改变幅度重置为0

	# 清空对簇的划分,对应上面算法的第3行
    clusters = []
    for i in range(k):
        clusters.append([])
    # 这个for对应上面算法的4-8行
    for melon in melons:
    	'''
    	argmin 函数找出容器中最小的下标,在这里这个目标容器是
    	list(map(lambda vec: np.linalg.norm(melon - vec, ord = 2), mean_vectors)),
    	它表示melon与mean_vectors中所有向量的距离列表。
    	(numpy.linalg.norm计算向量的范数,ord = 2即欧几里得范数,或模长)
    	'''
        c = np.argmin(
            list(map( lambda vec: np.linalg.norm(melon - vec, ord = 2), mean_vectors))
        )
        clusters[c].append(melon)
	# 这个for对应上面算法的9-16行
    for i in range(k):
    	# 求每个簇的新均值向量
        new_vector = np.zeros((1,2))
        for melon in clusters[i]:
            new_vector += melon
        new_vector /= len(clusters[i])

        # 累加改变幅度并更新均值向量
        change += np.linalg.norm(mean_vectors[i] - new_vector, ord = 2)
        mean_vectors[i] = new_vector
	# 若超过设定的轮次或者变化幅度<预先设定的阈值,结束算法
    if rnd > ROUND_LIMIT or change < THRESHOLD:
        break
print('最终迭代%d轮'%rnd)

最后我们绘图来观察一下划分的结果:

colors = ['red', 'green', 'blue']

# 每个簇换一下颜色,同时迭代簇和颜色两个列表
for i, col in zip(range(k), colors):
    for melon in clusters[i]:
    	# 绘制散点图
        plt.scatter(melon[0], melon[1], color = col)
plt.show()

划分结果(由于最开始的 k k k个均值向量随机选取,每次划分的结果可能会不同):

Python实现聚类K-means算法详解

完整代码:

import random
import numpy as np
import matplotlib.pyplot as plt

k = 3
rnd = 0
ROUND_LIMIT = 10
THRESHOLD = 1e-10
melons = []
clusters = []
f = open('melons.txt', 'r')
for line in f:
    melons.append(np.array(line.split(' '), dtype = np.string_).astype(np.float64))
mean_vectors = random.sample(melons, k)

while True:
    rnd += 1
    change = 0
    clusters = []
    for i in range(k):
        clusters.append([])
    for melon in melons:
        c = np.argmin(
            list(map( lambda vec: np.linalg.norm(melon - vec, ord = 2), mean_vectors))
        )
        clusters[c].append(melon)
    for i in range(k):
        new_vector = np.zeros((1,2))
        for melon in clusters[i]:
            new_vector += melon
        new_vector /= len(clusters[i])

        change += np.linalg.norm(mean_vectors[i] - new_vector, ord = 2)
        mean_vectors[i] = new_vector

    if rnd > ROUND_LIMIT or change < THRESHOLD:
        break
print('最终迭代%d轮'%rnd)
colors = ['red', 'green', 'blue']
for i, col in zip(range(k), colors):
    for melon in clusters[i]:
        plt.scatter(melon[0], melon[1], color = col)
plt.show()

sklearn库中的KMeans

这种经典算法显然不需要我们反复地造轮子,被广泛使用的python机器学习库sklearn已经提供了该算法的实现。sklearn的官方文档中给了我们一个示例:

>>> from sklearn.cluster import KMeans
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
...               [10, 2], [10, 4], [10, 0]])
>>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
>>> kmeans.labels_
array([1, 1, 1, 0, 0, 0], dtype=int32)
>>> kmeans.predict([[0, 0], [12, 3]])
array([1, 0], dtype=int32)
>>> kmeans.cluster_centers_
array([[10.,  2.],
       [ 1.,  2.]])

可以看出,X即要聚类的数据(1,2),(1,4),(1,0)等。
KMeans类的初始化参数n_clusters即簇数 k k k;
random_state是用于初始化选取 k k k个向量的随机数种子;
kmeans.labels_即每个点所属的簇;
kmeans.predict方法预测新的数据属于哪个簇;
kmeans.cluster_centers_返回每个簇的中心。
我们就改造一下这个简单的示例,完成对上面西瓜的聚类。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

X = []
f = open('melons.txt', 'r')
for line in f:
    X.append(np.array(line.split(' '), dtype = np.string_).astype(np.float64))
kmeans = KMeans(n_clusters = 3, random_state = 0).fit(X)
colors = ['red', 'green', 'blue']
for i, cluster in enumerate(kmeans.labels_):
    plt.scatter(X[i][0], X[i][1], color = colors[cluster])
plt.show()

运行结果如下,可以看到和我们手写的聚类结果基本一致:

Python实现聚类K-means算法详解

到此这篇关于Python实现聚类K-means算法详解的文章就介绍到这了,更多相关Python K-means算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python松散正则表达式用法分析
Apr 29 Python
利用标准库fractions模块让Python支持分数类型的方法详解
Aug 11 Python
python 批量修改/替换数据的实例
Jul 25 Python
python钉钉机器人运维脚本监控实例
Feb 20 Python
基于python2.7实现图形密码生成器的实例代码
Nov 05 Python
python将数组n等分的实例
Dec 02 Python
双向RNN:bidirectional_dynamic_rnn()函数的使用详解
Jan 20 Python
python自动点赞功能的实现思路
Feb 26 Python
Python3 pickle对象串行化代码实例解析
Mar 23 Python
Python request操作步骤及代码实例
Apr 13 Python
python 将列表里的字典元素合并为一个字典实例
Sep 01 Python
Python引入多个模块及包的概念过程解析
Sep 21 Python
python自动获取微信公众号最新文章的实现代码
Jul 15 #Python
pytorch实现加载保存查看checkpoint文件
Jul 15 #Python
pytest实现多进程与多线程运行超好用的插件
Jul 15 #Python
python如何将mat文件转为png
Jul 15 #Python
python读取mat文件生成h5文件的实现
Jul 15 #Python
全网非常详细的pytest配置文件
Jul 15 #Python
Python如何加载模型并查看网络
Jul 15 #Python
You might like
PHP 缓存实现代码及详细注释
2010/05/16 PHP
说说PHP的autoLoad自动加载机制
2012/09/27 PHP
PHP无限分类(树形类)的深入分析
2013/06/02 PHP
php获取当前时间的毫秒数的方法
2014/01/26 PHP
php查询mysql数据库并将结果保存到数组的方法
2015/03/18 PHP
详解PHP字符串替换str_replace()函数四种用法
2017/10/13 PHP
js静态作用域的功能。
2006/12/25 Javascript
使用jQuery向asp.net Mvc传递复杂json数据-ModelBinder篇
2010/05/07 Javascript
JavaScript实现网页上的浮动广告的简单方法
2013/06/14 Javascript
Javascript写入txt和读取txt文件示例
2014/02/12 Javascript
在JS中解析HTML字符串示例代码
2014/04/16 Javascript
EasyUI中datagrid在ie下reload失败解决方案
2015/03/09 Javascript
js实现导航跟随效果
2018/11/17 Javascript
JS栈stack类的实现与使用方法示例
2019/01/31 Javascript
在vue中给后台接口传的值为数组的格式代码
2020/11/12 Javascript
django 自定义用户user模型的三种方法
2014/11/18 Python
按日期打印Python的Tornado框架中的日志的方法
2015/05/02 Python
Python实现的端口扫描功能示例
2018/04/08 Python
基于python 爬虫爬到含空格的url的处理方法
2018/05/11 Python
对python判断ip是否可达的实例详解
2019/01/31 Python
python基础知识(一)变量与简单数据类型详解
2019/04/17 Python
Python中的类与类型示例详解
2019/07/10 Python
python PyAutoGUI 模拟鼠标键盘操作和截屏功能
2019/08/04 Python
程序员的七夕用30行代码让Python化身表白神器
2019/08/07 Python
python文件操作的简单方法总结
2019/11/07 Python
TensorFlow 多元函数的极值实例
2020/02/10 Python
python3实现飞机大战
2020/11/29 Python
python dir函数快速掌握用法技巧
2020/12/09 Python
Django模板报TemplateDoesNotExist异常(亲测可行)
2020/12/18 Python
HTML5中微数据概述及在搜索引擎中的使用举例
2013/02/07 HTML / CSS
公益活动邀请函
2014/02/05 职场文书
电子商务专业毕业生自荐书
2014/06/22 职场文书
安全生产先进个人总结
2015/02/15 职场文书
高考作弊检讨书1500字
2015/02/16 职场文书
2016教师校本研修心得体会
2016/01/08 职场文书
HTML+CSS制作心跳特效的实现
2021/05/26 HTML / CSS