Python实现聚类K-means算法详解


Posted in Python onJuly 15, 2022

K-means(K均值)算法是最简单的一种聚类算法,它期望最小化平方误差

Python实现聚类K-means算法详解

:为避免运行时间过长,通常设置一个最大运行轮数或最小调整幅度阈值,若到达最大轮数或调整幅度小于阈值,则停止运行。

下面我们用python来实现一下K-means算法:我们先尝试手动实现这个算法,再用sklearn库中的KMeans类来实现。数据我们采用《机器学习》的西瓜数据(P202表9.1):

# 下面的内容保存在 melons.txt 中
# 第一列为西瓜的密度;第二列为西瓜的含糖率。我们要把这30个西瓜分为3类
0.697 0.460
0.774 0.376
0.634 0.264
0.608 0.318
0.556 0.215
0.403 0.237
0.481 0.149
0.437 0.211
0.666 0.091
0.243 0.267
0.245 0.057
0.343 0.099
0.639 0.161
0.657 0.198
0.360 0.370
0.593 0.042
0.719 0.103
0.359 0.188
0.339 0.241
0.282 0.257
0.748 0.232
0.714 0.346
0.483 0.312
0.478 0.437
0.525 0.369
0.751 0.489
0.532 0.472
0.473 0.376
0.725 0.445
0.446 0.459

手动实现

我们用到的库有matplotlibnumpy,如果没有需要先用pip安装一下。

import random
import numpy as np
import matplotlib.pyplot as plt

下面定义一些数据:

k = 3 # 要分的簇数
rnd = 0 # 轮次,用于控制迭代次数(见上文)
ROUND_LIMIT = 100 # 轮次的上限
THRESHOLD = 1e-10 # 单轮改变距离的阈值,若改变幅度小于该阈值,算法终止
melons = [] # 西瓜的列表
clusters = [] # 簇的列表,clusters[i]表示第i簇包含的西瓜

从melons.txt读取数据,保存在列表中:

f = open('melons.txt', 'r')
for line in f:
	# 把字符串转化为numpy中的float64类型
    melons.append(np.array(line.split(' '), dtype = np.string_).astype(np.float64))

从 m m m个数据中随机挑选出 k k k个,对应上面算法的第 1 1 1行:

# random的sample函数从列表中随机挑选出k个样本(不重复)。我们在这里把这些样本作为均值向量
mean_vectors = random.sample(melons, k)

下面是算法的主要部分。

# 这个while对应上面算法的2-17行
while True:
    rnd += 1 # 轮次增加
    change = 0 # 把改变幅度重置为0

	# 清空对簇的划分,对应上面算法的第3行
    clusters = []
    for i in range(k):
        clusters.append([])
    # 这个for对应上面算法的4-8行
    for melon in melons:
    	'''
    	argmin 函数找出容器中最小的下标,在这里这个目标容器是
    	list(map(lambda vec: np.linalg.norm(melon - vec, ord = 2), mean_vectors)),
    	它表示melon与mean_vectors中所有向量的距离列表。
    	(numpy.linalg.norm计算向量的范数,ord = 2即欧几里得范数,或模长)
    	'''
        c = np.argmin(
            list(map( lambda vec: np.linalg.norm(melon - vec, ord = 2), mean_vectors))
        )
        clusters[c].append(melon)
	# 这个for对应上面算法的9-16行
    for i in range(k):
    	# 求每个簇的新均值向量
        new_vector = np.zeros((1,2))
        for melon in clusters[i]:
            new_vector += melon
        new_vector /= len(clusters[i])

        # 累加改变幅度并更新均值向量
        change += np.linalg.norm(mean_vectors[i] - new_vector, ord = 2)
        mean_vectors[i] = new_vector
	# 若超过设定的轮次或者变化幅度<预先设定的阈值,结束算法
    if rnd > ROUND_LIMIT or change < THRESHOLD:
        break
print('最终迭代%d轮'%rnd)

最后我们绘图来观察一下划分的结果:

colors = ['red', 'green', 'blue']

# 每个簇换一下颜色,同时迭代簇和颜色两个列表
for i, col in zip(range(k), colors):
    for melon in clusters[i]:
    	# 绘制散点图
        plt.scatter(melon[0], melon[1], color = col)
plt.show()

划分结果(由于最开始的 k k k个均值向量随机选取,每次划分的结果可能会不同):

Python实现聚类K-means算法详解

完整代码:

import random
import numpy as np
import matplotlib.pyplot as plt

k = 3
rnd = 0
ROUND_LIMIT = 10
THRESHOLD = 1e-10
melons = []
clusters = []
f = open('melons.txt', 'r')
for line in f:
    melons.append(np.array(line.split(' '), dtype = np.string_).astype(np.float64))
mean_vectors = random.sample(melons, k)

while True:
    rnd += 1
    change = 0
    clusters = []
    for i in range(k):
        clusters.append([])
    for melon in melons:
        c = np.argmin(
            list(map( lambda vec: np.linalg.norm(melon - vec, ord = 2), mean_vectors))
        )
        clusters[c].append(melon)
    for i in range(k):
        new_vector = np.zeros((1,2))
        for melon in clusters[i]:
            new_vector += melon
        new_vector /= len(clusters[i])

        change += np.linalg.norm(mean_vectors[i] - new_vector, ord = 2)
        mean_vectors[i] = new_vector

    if rnd > ROUND_LIMIT or change < THRESHOLD:
        break
print('最终迭代%d轮'%rnd)
colors = ['red', 'green', 'blue']
for i, col in zip(range(k), colors):
    for melon in clusters[i]:
        plt.scatter(melon[0], melon[1], color = col)
plt.show()

sklearn库中的KMeans

这种经典算法显然不需要我们反复地造轮子,被广泛使用的python机器学习库sklearn已经提供了该算法的实现。sklearn的官方文档中给了我们一个示例:

>>> from sklearn.cluster import KMeans
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
...               [10, 2], [10, 4], [10, 0]])
>>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
>>> kmeans.labels_
array([1, 1, 1, 0, 0, 0], dtype=int32)
>>> kmeans.predict([[0, 0], [12, 3]])
array([1, 0], dtype=int32)
>>> kmeans.cluster_centers_
array([[10.,  2.],
       [ 1.,  2.]])

可以看出,X即要聚类的数据(1,2),(1,4),(1,0)等。
KMeans类的初始化参数n_clusters即簇数 k k k;
random_state是用于初始化选取 k k k个向量的随机数种子;
kmeans.labels_即每个点所属的簇;
kmeans.predict方法预测新的数据属于哪个簇;
kmeans.cluster_centers_返回每个簇的中心。
我们就改造一下这个简单的示例,完成对上面西瓜的聚类。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

X = []
f = open('melons.txt', 'r')
for line in f:
    X.append(np.array(line.split(' '), dtype = np.string_).astype(np.float64))
kmeans = KMeans(n_clusters = 3, random_state = 0).fit(X)
colors = ['red', 'green', 'blue']
for i, cluster in enumerate(kmeans.labels_):
    plt.scatter(X[i][0], X[i][1], color = colors[cluster])
plt.show()

运行结果如下,可以看到和我们手写的聚类结果基本一致:

Python实现聚类K-means算法详解

到此这篇关于Python实现聚类K-means算法详解的文章就介绍到这了,更多相关Python K-means算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python常用模块介绍
Nov 21 Python
Python中的ConfigParser模块使用详解
May 04 Python
Python中MySQL数据迁移到MongoDB脚本的方法
Apr 28 Python
python xml解析实例详解
Nov 14 Python
使用Pyinstaller的最新踩坑实战记录
Nov 08 Python
python学习之hook钩子的原理和使用
Oct 25 Python
python 同时读取多个文件的例子
Jul 16 Python
python 提取文件指定列的方法示例
Aug 07 Python
PyQt5通过信号实现MVC的示例
Feb 06 Python
Python图片检索之以图搜图
May 31 Python
python套接字socket通信
Apr 01 Python
python和Appium的移动端多设备自动化测试框架
Apr 26 Python
python自动获取微信公众号最新文章的实现代码
Jul 15 #Python
pytorch实现加载保存查看checkpoint文件
Jul 15 #Python
pytest实现多进程与多线程运行超好用的插件
Jul 15 #Python
python如何将mat文件转为png
Jul 15 #Python
python读取mat文件生成h5文件的实现
Jul 15 #Python
全网非常详细的pytest配置文件
Jul 15 #Python
Python如何加载模型并查看网络
Jul 15 #Python
You might like
php数组函数序列之next() - 移动数组内部指针到下一个元素的位置,并返回该元素值
2011/10/31 PHP
phpmail类发送邮件函数代码
2012/02/20 PHP
php安装扩展mysqli的实现步骤及报错解决办法
2017/09/23 PHP
thinkPHP中U方法加密传递参数功能示例
2018/05/29 PHP
php实现推荐功能的简单实例
2019/09/29 PHP
js textarea自动增高并隐藏滚动条
2009/12/16 Javascript
Javascript学习笔记6 prototype的提出
2010/01/11 Javascript
JavaScript CSS修改学习第三章 修改样式表
2010/02/19 Javascript
jQuery实现按钮只点击一次后就取消点击事件绑定的方法
2015/06/26 Javascript
jQuery实现的分子运动小球碰撞效果
2016/01/27 Javascript
JS设计模式之惰性模式(二)
2017/09/29 Javascript
简单的Vue SSR的示例代码
2018/01/12 Javascript
mui框架 页面无法滚动的解决方法(推荐)
2018/01/25 Javascript
Vue项目中跨域问题解决方案
2018/06/05 Javascript
React之PureComponent的使用作用
2018/07/10 Javascript
js运算符的一些特殊用法
2018/07/29 Javascript
jQuery 点击获取验证码按钮及倒计时功能
2018/09/20 jQuery
微信小程序map组件结合高德地图API实现wx.chooseLocation功能示例
2019/01/23 Javascript
Vue组件通信入门之Provide和Inject机制
2019/12/29 Javascript
Python中xrange与yield的用法实例分析
2017/12/26 Python
python中numpy的矩阵、多维数组的用法
2018/02/05 Python
tensorflow获取变量维度信息
2018/03/10 Python
解决python 输出是省略号的问题
2018/04/19 Python
Python爬虫包BeautifulSoup异常处理(二)
2018/06/17 Python
Python实现统计英文文章词频的方法分析
2019/01/28 Python
Python字典生成式、集合生成式、生成器用法实例分析
2020/01/07 Python
Python实现括号匹配方法详解
2020/02/10 Python
植村秀加拿大官网:Shu Uemura加拿大
2019/09/03 全球购物
大学生军训自我评价分享
2013/11/09 职场文书
仓库理货员岗位职责
2013/12/18 职场文书
监理资料员岗位职责
2014/01/03 职场文书
自考毕业自我鉴定
2014/03/18 职场文书
青春励志演讲稿
2014/04/29 职场文书
党员个人总结自评
2015/02/14 职场文书
读书笔记格式
2015/07/02 职场文书
纯html+css实现打字效果
2021/08/02 HTML / CSS