将keras的h5模型转换为tensorflow的pb模型操作


Posted in Python onMay 25, 2020

背景:目前keras框架使用简单,很容易上手,深得广大算法工程师的喜爱,但是当部署到客户端时,可能会出现各种各样的bug,甚至不支持使用keras,本文来解决的是将keras的h5模型转换为客户端常用的tensorflow的pb模型并使用tensorflow加载pb模型。

h5_to_pb.py
 
from keras.models import load_model
import tensorflow as tf
import os 
import os.path as osp
from keras import backend as K
#路径参数
input_path = 'input path'
weight_file = 'weight.h5'
weight_file_path = osp.join(input_path,weight_file)
output_graph_name = weight_file[:-3] + '.pb'
#转换函数
def h5_to_pb(h5_model,output_dir,model_name,out_prefix = "output_",log_tensorboard = True):
  if osp.exists(output_dir) == False:
    os.mkdir(output_dir)
  out_nodes = []
  for i in range(len(h5_model.outputs)):
    out_nodes.append(out_prefix + str(i + 1))
    tf.identity(h5_model.output[i],out_prefix + str(i + 1))
  sess = K.get_session()
  from tensorflow.python.framework import graph_util,graph_io
  init_graph = sess.graph.as_graph_def()
  main_graph = graph_util.convert_variables_to_constants(sess,init_graph,out_nodes)
  graph_io.write_graph(main_graph,output_dir,name = model_name,as_text = False)
  if log_tensorboard:
    from tensorflow.python.tools import import_pb_to_tensorboard
    import_pb_to_tensorboard.import_to_tensorboard(osp.join(output_dir,model_name),output_dir)
#输出路径
output_dir = osp.join(os.getcwd(),"trans_model")
#加载模型
h5_model = load_model(weight_file_path)
h5_to_pb(h5_model,output_dir = output_dir,model_name = output_graph_name)
print('model saved')

将转换成的pb模型进行加载

load_pb.py
 
import tensorflow as tf
from tensorflow.python.platform import gfile
 
def load_pb(pb_file_path):
  sess = tf.Session()
  with gfile.FastGFile(pb_file_path, 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    sess.graph.as_default()
    tf.import_graph_def(graph_def, name='')
 
  print(sess.run('b:0'))
  #输入
  input_x = sess.graph.get_tensor_by_name('x:0')
  input_y = sess.graph.get_tensor_by_name('y:0')
  #输出
  op = sess.graph.get_tensor_by_name('op_to_store:0')
  #预测结果
  ret = sess.run(op, {input_x: 3, input_y: 4})
  print(ret)

补充知识:h5模型转化为pb模型,代码及排坑

我是在实际工程中要用到tensorflow训练的pb模型,但是训练的代码是用keras写的,所以生成keras特定的h5模型,所以用到了h5_to_pb.py函数。

附上h5_to_pb.py(python3)

#*-coding:utf-8-*

"""
将keras的.h5的模型文件,转换成TensorFlow的pb文件
"""
# ==========================================================

from keras.models import load_model
import tensorflow as tf
import os.path as osp
import os
from keras import backend
#from keras.models import Sequential

def h5_to_pb(h5_model, output_dir, model_name, out_prefix="output_", log_tensorboard=True):
  """.h5模型文件转换成pb模型文件
  Argument:
    h5_model: str
      .h5模型文件
    output_dir: str
      pb模型文件保存路径
    model_name: str
      pb模型文件名称
    out_prefix: str
      根据训练,需要修改
    log_tensorboard: bool
      是否生成日志文件
  Return:
    pb模型文件
  """
  if os.path.exists(output_dir) == False:
    os.mkdir(output_dir)
  out_nodes = []
  for i in range(len(h5_model.outputs)):
    out_nodes.append(out_prefix + str(i + 1))
    tf.identity(h5_model.output[i], out_prefix + str(i + 1))
  sess = backend.get_session()

  from tensorflow.python.framework import graph_util, graph_io
  # 写入pb模型文件
  init_graph = sess.graph.as_graph_def()
  main_graph = graph_util.convert_variables_to_constants(sess, init_graph, out_nodes)
  graph_io.write_graph(main_graph, output_dir, name=model_name, as_text=False)
  # 输出日志文件
  if log_tensorboard:
    from tensorflow.python.tools import import_pb_to_tensorboard
    import_pb_to_tensorboard.import_to_tensorboard(os.path.join(output_dir, model_name), output_dir)

if __name__ == '__main__':
  # .h模型文件路径参数
  input_path = 'D:/CSP'
  weight_file = 'xingren.h5'
  weight_file_path = os.path.join(input_path, weight_file)
  output_graph_name = weight_file[:-3] + '.pb'

  # pb模型文件输出输出路径
  output_dir = osp.join(os.getcwd(),"trans_model")
  #model.save(xingren.h5)
  # 加载模型
  #h5_model = Sequential()
  h5_model = load_model(weight_file_path)
  #h5_model.save(weight_file_path)
  #h5_model.save('xingren.h5')
  h5_to_pb(h5_model, output_dir=output_dir, model_name=output_graph_name)
  print ('Finished')

在运行的时候遇到了下面问题:

将keras的h5模型转换为tensorflow的pb模型操作

原因:我们训练模型的时候用save_weights函数保存模型,但是这个函数只保存了权重文件,并没有又保存模型的参数。要把save_weights改为save。

下边是两个函数介绍:

save()保存的模型结果,它既保持了模型的图结构,又保存了模型的参数。

save_weights()保存的模型结果,它只保存了模型的参数,但并没有保存模型的图结构

以上这篇将keras的h5模型转换为tensorflow的pb模型操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现批量图片格式转换
Jun 16 Python
python 删除字符串中连续多个空格并保留一个的方法
Dec 22 Python
DataFrame:通过SparkSql将scala类转为DataFrame的方法
Jan 29 Python
python pandas模块基础学习详解
Jul 03 Python
python 搜索大文件的实例代码
Jul 08 Python
python基于socket进行端口转发实现后门隐藏的示例
Jul 25 Python
Win10下python 2.7与python 3.7双环境安装教程图解
Oct 12 Python
python tornado修改log输出方式
Nov 18 Python
使用pickle存储数据dump 和 load实例讲解
Dec 30 Python
给 TensorFlow 变量进行赋值的方式
Feb 10 Python
浅谈Python类的单继承相关知识
May 12 Python
使用python绘制横竖条形图
Apr 21 Python
tensorflow转换ckpt为savermodel模型的实现
May 25 #Python
基于Python把网站域名解析成ip地址
May 25 #Python
使用keras和tensorflow保存为可部署的pb格式
May 25 #Python
Python使用configparser读取ini配置文件
May 25 #Python
浅谈tensorflow模型保存为pb的各种姿势
May 25 #Python
详解tensorflow2.x版本无法调用gpu的一种解决方法
May 25 #Python
keras模型保存为tensorflow的二进制模型方式
May 25 #Python
You might like
PHP模拟asp中response类实现方法
2015/08/08 PHP
PHP实现求解最长公共子串问题的方法
2017/11/17 PHP
js中判断控件是否存在
2010/08/25 Javascript
jQuery 1.5最新版本的改进细节分析
2011/01/19 Javascript
jquery实现div阴影效果示例代码
2013/09/16 Javascript
jquery map方法使用示例
2014/04/23 Javascript
javascript实现十六进制颜色值(HEX)和RGB格式相互转换
2014/06/20 Javascript
基于javascript实现泡泡大冒险网页版小游戏
2016/03/23 Javascript
Bootstrap企业网站实战项目4
2016/10/14 Javascript
jQuery模拟下拉框选择对应菜单的内容
2017/03/07 Javascript
Vue完整项目构建(进阶篇)
2018/02/10 Javascript
[47:22]Mineski vs Winstrike 2018国际邀请赛小组赛BO2 第二场 8.16
2018/08/17 DOTA
CentOS 7下Python 2.7升级至Python3.6.1的实战教程
2017/07/06 Python
Python + selenium自动化环境搭建的完整步骤
2018/05/19 Python
python制作抖音代码舞
2019/04/07 Python
python 有效的括号的实现代码示例
2019/11/11 Python
numpy按列连接两个维数不同的数组方式
2019/12/06 Python
python lambda函数及三个常用的高阶函数
2020/02/05 Python
python实现将列表中各个值快速赋值给多个变量
2020/04/02 Python
Python库skimage绘制二值图像代码实例
2020/04/10 Python
python requests包的request()函数中的参数-params和data的区别介绍
2020/05/05 Python
keras读取h5文件load_weights、load代码操作
2020/06/12 Python
深入了解Python装饰器的高级用法
2020/08/13 Python
Django url 路由匹配过程详解
2021/01/22 Python
详解如何通过H5(浏览器/WebView/其他)唤起本地app
2017/12/11 HTML / CSS
canvas裁剪clip()函数的具体使用
2018/03/01 HTML / CSS
西班牙鞋子和箱包在线销售网站:zapatos.es
2020/02/17 全球购物
大学校运会广播稿
2014/02/03 职场文书
森林防火工作方案
2014/02/14 职场文书
平安家庭示范户事迹
2014/06/02 职场文书
个人求职自荐信范文
2014/06/20 职场文书
给妈妈洗脚活动方案
2014/08/16 职场文书
小学生志愿者活动方案
2014/08/23 职场文书
2015年扫黄打非工作总结
2015/05/13 职场文书
python 如何获取页面所有a标签下href的值
2021/05/06 Python
《火纹风花雪月无双》预告“神秘雇佣兵” 紫发剑客
2022/04/13 其他游戏