keras模型保存为tensorflow的二进制模型方式


Posted in Python onMay 25, 2020

最近需要将使用keras训练的模型移植到手机上使用, 因此需要转换到tensorflow的二进制模型。

折腾一下午,终于找到一个合适的方法,废话不多说,直接上代码:

# coding=utf-8
import sys

from keras.models import load_model
import tensorflow as tf
import os
import os.path as osp
from keras import backend as K

def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True):
 """
 Freezes the state of a session into a prunned computation graph.

 Creates a new computation graph where variable nodes are replaced by
 constants taking their current value in the session. The new graph will be
 prunned so subgraphs that are not neccesary to compute the requested
 outputs are removed.
 @param session The TensorFlow session to be frozen.
 @param keep_var_names A list of variable names that should not be frozen,
       or None to freeze all the variables in the graph.
 @param output_names Names of the relevant graph outputs.
 @param clear_devices Remove the device directives from the graph for better portability.
 @return The frozen graph definition.
 """
 from tensorflow.python.framework.graph_util import convert_variables_to_constants
 graph = session.graph
 with graph.as_default():
  freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or []))
  output_names = output_names or []
  output_names += [v.op.name for v in tf.global_variables()]
  input_graph_def = graph.as_graph_def()
  if clear_devices:
   for node in input_graph_def.node:
    node.device = ""
  frozen_graph = convert_variables_to_constants(session, input_graph_def,
              output_names, freeze_var_names)
  return frozen_graph

input_fld = sys.path[0]
weight_file = 'your_model.h5'
output_graph_name = 'tensor_model.pb'

output_fld = input_fld + '/tensorflow_model/'
if not os.path.isdir(output_fld):
 os.mkdir(output_fld)
weight_file_path = osp.join(input_fld, weight_file)

K.set_learning_phase(0)
net_model = load_model(weight_file_path)

print('input is :', net_model.input.name)
print ('output is:', net_model.output.name)

sess = K.get_session()

frozen_graph = freeze_session(K.get_session(), output_names=[net_model.output.op.name])

from tensorflow.python.framework import graph_io

graph_io.write_graph(frozen_graph, output_fld, output_graph_name, as_text=False)

print('saved the constant graph (ready for inference) at: ', osp.join(output_fld, output_graph_name))

上面代码实现保存到当前目录的tensor_model目录下。

验证:

import tensorflow as tf
import numpy as np
import PIL.Image as Image
import cv2

def recognize(jpg_path, pb_file_path):
 with tf.Graph().as_default():
  output_graph_def = tf.GraphDef()

  with open(pb_file_path, "rb") as f:
   output_graph_def.ParseFromString(f.read())
   tensors = tf.import_graph_def(output_graph_def, name="")
   print tensors

  with tf.Session() as sess:
   init = tf.global_variables_initializer()
   sess.run(init)

   op = sess.graph.get_operations()
   
   for m in op:
    print(m.values())

   input_x = sess.graph.get_tensor_by_name("convolution2d_1_input:0") #具体名称看上一段代码的input.name
   print input_x

   out_softmax = sess.graph.get_tensor_by_name("activation_4/Softmax:0") #具体名称看上一段代码的output.name

   print out_softmax

   img = cv2.imread(jpg_path, 0)
   img_out_softmax = sess.run(out_softmax,
          feed_dict={input_x: 1.0 - np.array(img).reshape((-1,28, 28, 1)) / 255.0})

   print "img_out_softmax:", img_out_softmax
   prediction_labels = np.argmax(img_out_softmax, axis=1)
   print "label:", prediction_labels

pb_path = 'tensorflow_model/constant_graph_weights.pb'
img = 'test/6/8_48.jpg'
recognize(img, pb_path)

补充知识:如何将keras训练好的模型转换成tensorflow的.pb的文件并在TensorFlow serving环境调用

首先keras训练好的模型通过自带的model.save()保存下来是 .model (.h5) 格式的文件

模型载入是通过 my_model = keras . models . load_model( filepath )

要将该模型转换为.pb 格式的TensorFlow 模型,代码如下:

# -*- coding: utf-8 -*-
from keras.layers.core import Activation, Dense, Flatten
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import LSTM
from keras.layers import Dropout
from keras.layers.wrappers import Bidirectional
from keras.models import Sequential,load_model
from keras.preprocessing import sequence
from sklearn.model_selection import train_test_split
import collections
from collections import defaultdict
import jieba
import numpy as np
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import tensorflow as tf
import os
import os.path as osp
from keras import backend as K
def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True):
 from tensorflow.python.framework.graph_util import convert_variables_to_constants
 graph = session.graph
 with graph.as_default():
  freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or []))
  output_names = output_names or []
  output_names += [v.op.name for v in tf.global_variables()]
  input_graph_def = graph.as_graph_def()
  if clear_devices:
   for node in input_graph_def.node:
    node.device = ""
  frozen_graph = convert_variables_to_constants(session, input_graph_def,
              output_names, freeze_var_names)
  return frozen_graph
input_fld = '/data/codebase/Keyword-fenci/brand_recogniton_biLSTM/'
weight_file = 'biLSTM_brand_recognize.model'
output_graph_name = 'tensor_model_v3.pb'

output_fld = input_fld + '/tensorflow_model/'
if not os.path.isdir(output_fld):
 os.mkdir(output_fld)
weight_file_path = osp.join(input_fld, weight_file)

K.set_learning_phase(0)
net_model = load_model(weight_file_path)

print('input is :', net_model.input.name)
print ('output is:', net_model.output.name)

sess = K.get_session()

frozen_graph = freeze_session(K.get_session(), output_names=[net_model.output.op.name])
from tensorflow.python.framework import graph_io

graph_io.write_graph(frozen_graph, output_fld, output_graph_name, as_text=True)

print('saved the constant graph (ready for inference) at: ', osp.join(output_fld, output_graph_name))

然后模型就存成了.pb格式的文件

问题就来了,这样存下来的.pb格式的文件是frozen model

如果通过TensorFlow serving 启用模型的话,会报错:

E tensorflow_serving/core/aspired_versions_manager.cc:358] Servable {name: mnist version: 1} cannot be loaded: Not found: Could not find meta graph def matching supplied tags: { serve }. To inspect available tag-sets in the SavedModel, please use the SavedModel CLI: `saved_model_cli`

因为TensorFlow serving 希望读取的是saved model

于是需要将frozen model 转化为 saved model 格式,解决方案如下:

from tensorflow.python.saved_model import signature_constants
from tensorflow.python.saved_model import tag_constants

export_dir = '/data/codebase/Keyword-fenci/brand_recogniton_biLSTM/saved_model'
graph_pb = '/data/codebase/Keyword-fenci/brand_recogniton_biLSTM/tensorflow_model/tensor_model.pb'

builder = tf.saved_model.builder.SavedModelBuilder(export_dir)

with tf.gfile.GFile(graph_pb, "rb") as f:
 graph_def = tf.GraphDef()
 graph_def.ParseFromString(f.read())

sigs = {}

with tf.Session(graph=tf.Graph()) as sess:
 # name="" is important to ensure we don't get spurious prefixing
 tf.import_graph_def(graph_def, name="")
 g = tf.get_default_graph()
 inp = g.get_tensor_by_name(net_model.input.name)
 out = g.get_tensor_by_name(net_model.output.name)

 sigs[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = \
  tf.saved_model.signature_def_utils.predict_signature_def(
   {"in": inp}, {"out": out})

 builder.add_meta_graph_and_variables(sess,
           [tag_constants.SERVING],
           signature_def_map=sigs)
builder.save()

于是保存下来的saved model 文件夹下就有两个文件:

saved_model.pb variables

其中variables 可以为空

于是将.pb 模型导入serving再读取,成功!

以上这篇keras模型保存为tensorflow的二进制模型方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python的Django框架中的表单处理示例
Jul 17 Python
基于Python 的进程管理工具supervisor使用指南
Sep 18 Python
python3+PyQt5+Qt Designer实现堆叠窗口部件
Apr 20 Python
Python小进度条显示代码
Mar 05 Python
如何使用Python自动控制windows桌面
Jul 11 Python
python socket通信编程实现文件上传代码实例
Dec 14 Python
python golang中grpc 使用示例代码详解
Jun 03 Python
详解pyinstaller生成exe的闪退问题解决方案
Jun 19 Python
Python使用tkinter实现小时钟效果
Feb 22 Python
基于flask实现五子棋小游戏
May 25 Python
Python实现单例模式的5种方法
Jun 15 Python
Python OpenCV之常用滤波器使用详解
Apr 07 Python
keras 如何保存最佳的训练模型
May 25 #Python
keras处理欠拟合和过拟合的实例讲解
May 25 #Python
python如何调用字典的key
May 25 #Python
如何使用python的ctypes调用医保中心的dll动态库下载医保中心的账单
May 24 #Python
Python+PyQt5实现灭霸响指功能
May 25 #Python
PyQt5实现仿QQ贴边隐藏功能的实例代码
May 24 #Python
通过Python扫描代码关键字并进行预警的实现方法
May 24 #Python
You might like
php对数组内元素进行随机调换的方法
2015/05/12 PHP
自用js开发框架小成 学习js的朋友可以看看
2010/11/16 Javascript
jQuery中 noConflict() 方法使用
2013/04/25 Javascript
JavaScript子类用Object.getPrototypeOf去调用父类方法解析
2013/12/05 Javascript
禁用页面部分JavaScript不是全部而是部分
2014/09/03 Javascript
JavaScript严格模式禁用With语句的原因
2014/10/20 Javascript
JavaScript iframe数据共享接口实现方法
2016/01/06 Javascript
基于Vue+elementUI实现动态表单的校验功能(根据条件动态切换校验格式)
2019/04/04 Javascript
vxe-table vue table 表格组件功能
2019/05/26 Javascript
解决一个微信号同时支持多个环境网页授权问题
2019/08/07 Javascript
vue模块移动组件的实现示例
2020/05/20 Javascript
[01:10:24]DOTA2-DPC中国联赛 正赛 VG vs Aster BO3 第一场 2月28日
2021/03/11 DOTA
详解Python中的strftime()方法的使用
2015/05/22 Python
python与sqlite3实现解密chrome cookie实例代码
2018/01/20 Python
Python字典的核心底层原理讲解
2019/01/24 Python
Python Pandas 获取列匹配特定值的行的索引问题
2019/07/01 Python
python变量命名的7条建议
2019/07/04 Python
python中的TCP(传输控制协议)用法实例分析
2019/11/15 Python
python 给图像添加透明度(alpha通道)
2020/04/09 Python
Keras - GPU ID 和显存占用设定步骤
2020/06/22 Python
Python安装Bs4的多种方法
2020/11/28 Python
HTML5 文件上传下载的实例代码
2017/07/03 HTML / CSS
Backcountry旗下的户外商品闪购网站:steep&cheap
2016/09/22 全球购物
Joules美国官网:出色的英国风格
2017/10/30 全球购物
Paul Smith英国官网:英国国宝级时装品牌
2019/03/21 全球购物
OSPF有什么优点?为什么OSPF比RIP收敛快?
2013/02/13 面试题
写自荐信的七个技巧
2013/10/15 职场文书
信息管理专业推荐信
2013/10/29 职场文书
优秀党支部事迹材料
2014/01/14 职场文书
2014年最新学习全国两会精神心得
2014/03/17 职场文书
个性车贴标语
2014/06/24 职场文书
小学生十佳少年事迹材料
2014/08/20 职场文书
个人职业及收入证明
2014/10/13 职场文书
模范教师材料大全
2014/12/16 职场文书
mysql的MVCC多版本并发控制的实现
2021/04/14 MySQL
vue生命周期钩子函数以及触发时机
2022/04/26 Vue.js