keras模型保存为tensorflow的二进制模型方式


Posted in Python onMay 25, 2020

最近需要将使用keras训练的模型移植到手机上使用, 因此需要转换到tensorflow的二进制模型。

折腾一下午,终于找到一个合适的方法,废话不多说,直接上代码:

# coding=utf-8
import sys

from keras.models import load_model
import tensorflow as tf
import os
import os.path as osp
from keras import backend as K

def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True):
 """
 Freezes the state of a session into a prunned computation graph.

 Creates a new computation graph where variable nodes are replaced by
 constants taking their current value in the session. The new graph will be
 prunned so subgraphs that are not neccesary to compute the requested
 outputs are removed.
 @param session The TensorFlow session to be frozen.
 @param keep_var_names A list of variable names that should not be frozen,
       or None to freeze all the variables in the graph.
 @param output_names Names of the relevant graph outputs.
 @param clear_devices Remove the device directives from the graph for better portability.
 @return The frozen graph definition.
 """
 from tensorflow.python.framework.graph_util import convert_variables_to_constants
 graph = session.graph
 with graph.as_default():
  freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or []))
  output_names = output_names or []
  output_names += [v.op.name for v in tf.global_variables()]
  input_graph_def = graph.as_graph_def()
  if clear_devices:
   for node in input_graph_def.node:
    node.device = ""
  frozen_graph = convert_variables_to_constants(session, input_graph_def,
              output_names, freeze_var_names)
  return frozen_graph

input_fld = sys.path[0]
weight_file = 'your_model.h5'
output_graph_name = 'tensor_model.pb'

output_fld = input_fld + '/tensorflow_model/'
if not os.path.isdir(output_fld):
 os.mkdir(output_fld)
weight_file_path = osp.join(input_fld, weight_file)

K.set_learning_phase(0)
net_model = load_model(weight_file_path)

print('input is :', net_model.input.name)
print ('output is:', net_model.output.name)

sess = K.get_session()

frozen_graph = freeze_session(K.get_session(), output_names=[net_model.output.op.name])

from tensorflow.python.framework import graph_io

graph_io.write_graph(frozen_graph, output_fld, output_graph_name, as_text=False)

print('saved the constant graph (ready for inference) at: ', osp.join(output_fld, output_graph_name))

上面代码实现保存到当前目录的tensor_model目录下。

验证:

import tensorflow as tf
import numpy as np
import PIL.Image as Image
import cv2

def recognize(jpg_path, pb_file_path):
 with tf.Graph().as_default():
  output_graph_def = tf.GraphDef()

  with open(pb_file_path, "rb") as f:
   output_graph_def.ParseFromString(f.read())
   tensors = tf.import_graph_def(output_graph_def, name="")
   print tensors

  with tf.Session() as sess:
   init = tf.global_variables_initializer()
   sess.run(init)

   op = sess.graph.get_operations()
   
   for m in op:
    print(m.values())

   input_x = sess.graph.get_tensor_by_name("convolution2d_1_input:0") #具体名称看上一段代码的input.name
   print input_x

   out_softmax = sess.graph.get_tensor_by_name("activation_4/Softmax:0") #具体名称看上一段代码的output.name

   print out_softmax

   img = cv2.imread(jpg_path, 0)
   img_out_softmax = sess.run(out_softmax,
          feed_dict={input_x: 1.0 - np.array(img).reshape((-1,28, 28, 1)) / 255.0})

   print "img_out_softmax:", img_out_softmax
   prediction_labels = np.argmax(img_out_softmax, axis=1)
   print "label:", prediction_labels

pb_path = 'tensorflow_model/constant_graph_weights.pb'
img = 'test/6/8_48.jpg'
recognize(img, pb_path)

补充知识:如何将keras训练好的模型转换成tensorflow的.pb的文件并在TensorFlow serving环境调用

首先keras训练好的模型通过自带的model.save()保存下来是 .model (.h5) 格式的文件

模型载入是通过 my_model = keras . models . load_model( filepath )

要将该模型转换为.pb 格式的TensorFlow 模型,代码如下:

# -*- coding: utf-8 -*-
from keras.layers.core import Activation, Dense, Flatten
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import LSTM
from keras.layers import Dropout
from keras.layers.wrappers import Bidirectional
from keras.models import Sequential,load_model
from keras.preprocessing import sequence
from sklearn.model_selection import train_test_split
import collections
from collections import defaultdict
import jieba
import numpy as np
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import tensorflow as tf
import os
import os.path as osp
from keras import backend as K
def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True):
 from tensorflow.python.framework.graph_util import convert_variables_to_constants
 graph = session.graph
 with graph.as_default():
  freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or []))
  output_names = output_names or []
  output_names += [v.op.name for v in tf.global_variables()]
  input_graph_def = graph.as_graph_def()
  if clear_devices:
   for node in input_graph_def.node:
    node.device = ""
  frozen_graph = convert_variables_to_constants(session, input_graph_def,
              output_names, freeze_var_names)
  return frozen_graph
input_fld = '/data/codebase/Keyword-fenci/brand_recogniton_biLSTM/'
weight_file = 'biLSTM_brand_recognize.model'
output_graph_name = 'tensor_model_v3.pb'

output_fld = input_fld + '/tensorflow_model/'
if not os.path.isdir(output_fld):
 os.mkdir(output_fld)
weight_file_path = osp.join(input_fld, weight_file)

K.set_learning_phase(0)
net_model = load_model(weight_file_path)

print('input is :', net_model.input.name)
print ('output is:', net_model.output.name)

sess = K.get_session()

frozen_graph = freeze_session(K.get_session(), output_names=[net_model.output.op.name])
from tensorflow.python.framework import graph_io

graph_io.write_graph(frozen_graph, output_fld, output_graph_name, as_text=True)

print('saved the constant graph (ready for inference) at: ', osp.join(output_fld, output_graph_name))

然后模型就存成了.pb格式的文件

问题就来了,这样存下来的.pb格式的文件是frozen model

如果通过TensorFlow serving 启用模型的话,会报错:

E tensorflow_serving/core/aspired_versions_manager.cc:358] Servable {name: mnist version: 1} cannot be loaded: Not found: Could not find meta graph def matching supplied tags: { serve }. To inspect available tag-sets in the SavedModel, please use the SavedModel CLI: `saved_model_cli`

因为TensorFlow serving 希望读取的是saved model

于是需要将frozen model 转化为 saved model 格式,解决方案如下:

from tensorflow.python.saved_model import signature_constants
from tensorflow.python.saved_model import tag_constants

export_dir = '/data/codebase/Keyword-fenci/brand_recogniton_biLSTM/saved_model'
graph_pb = '/data/codebase/Keyword-fenci/brand_recogniton_biLSTM/tensorflow_model/tensor_model.pb'

builder = tf.saved_model.builder.SavedModelBuilder(export_dir)

with tf.gfile.GFile(graph_pb, "rb") as f:
 graph_def = tf.GraphDef()
 graph_def.ParseFromString(f.read())

sigs = {}

with tf.Session(graph=tf.Graph()) as sess:
 # name="" is important to ensure we don't get spurious prefixing
 tf.import_graph_def(graph_def, name="")
 g = tf.get_default_graph()
 inp = g.get_tensor_by_name(net_model.input.name)
 out = g.get_tensor_by_name(net_model.output.name)

 sigs[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = \
  tf.saved_model.signature_def_utils.predict_signature_def(
   {"in": inp}, {"out": out})

 builder.add_meta_graph_and_variables(sess,
           [tag_constants.SERVING],
           signature_def_map=sigs)
builder.save()

于是保存下来的saved model 文件夹下就有两个文件:

saved_model.pb variables

其中variables 可以为空

于是将.pb 模型导入serving再读取,成功!

以上这篇keras模型保存为tensorflow的二进制模型方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python dict remove数组删除(del,pop)
Mar 24 Python
Python脚本暴力破解栅栏密码
Oct 19 Python
详解python里使用正则表达式的分组命名方式
Oct 24 Python
python dataframe astype 字段类型转换方法
Apr 11 Python
PyQt5实现下载进度条效果
Apr 19 Python
Django使用AJAX调用自己写的API接口的方法
Mar 06 Python
python调用自定义函数的实例操作
Jun 26 Python
使用Python opencv实现视频与图片的相互转换
Jul 08 Python
python数据归一化及三种方法详解
Aug 06 Python
Django+zTree构建组织架构树的方法
Aug 21 Python
python序列化与数据持久化实例详解
Dec 20 Python
python 基于pygame实现俄罗斯方块
Mar 02 Python
keras 如何保存最佳的训练模型
May 25 #Python
keras处理欠拟合和过拟合的实例讲解
May 25 #Python
python如何调用字典的key
May 25 #Python
如何使用python的ctypes调用医保中心的dll动态库下载医保中心的账单
May 24 #Python
Python+PyQt5实现灭霸响指功能
May 25 #Python
PyQt5实现仿QQ贴边隐藏功能的实例代码
May 24 #Python
通过Python扫描代码关键字并进行预警的实现方法
May 24 #Python
You might like
PHP控制网页过期时间的代码
2008/09/28 PHP
PHP 截取字符串 分别适合GB2312和UTF8编码情况
2009/02/12 PHP
JSON在PHP中的应用介绍
2012/09/08 PHP
PHP中使用Imagick操作PSD文件实例
2015/01/26 PHP
CI操作cookie的方法分析(基于helper类库)
2016/03/28 PHP
php从身份证获取性别和出生年月
2017/02/09 PHP
ubutu 16.04环境下,PHP与mysql数据库,网页登录验证实例讲解
2017/07/20 PHP
页面调用单个swf文件,嵌套出多个方法。
2011/11/21 Javascript
js获取select标签选中值的两种方式
2014/01/09 Javascript
JS模式之单例模式基本用法
2015/06/30 Javascript
认识jQuery的Promise的具体使用方法
2017/10/10 jQuery
node打造微信个人号机器人的方法示例
2018/04/26 Javascript
Vue兼容ie9的问题全面解决方案
2018/06/19 Javascript
js实现固定区域内的不重叠随机圆
2019/10/24 Javascript
pycharm 使用心得(一)安装和首次使用
2014/06/05 Python
在Linux下使用Python的matplotlib绘制数据图的教程
2015/06/11 Python
Python Queue模块详细介绍及实例
2016/12/27 Python
利用Python实现Windows下的鼠标键盘模拟的实例代码
2017/07/13 Python
python提取包含关键字的整行数据方法
2018/12/11 Python
简单易懂Pytorch实战实例VGG深度网络
2019/08/27 Python
超实用的 30 段 Python 案例
2019/10/10 Python
解决pycharm最左侧Tool Buttons显示不全的问题
2019/12/17 Python
python如何实现word批量转HTML
2020/09/30 Python
Python读取pdf表格写入excel的方法
2021/01/22 Python
印尼值得信赖的在线交易网站:Bukalapak
2019/03/11 全球购物
网络技术支持面试题
2013/04/22 面试题
企业面试题试卷附带答案
2015/12/20 面试题
特色蛋糕店创业计划书
2014/01/28 职场文书
趣味比赛活动方案
2014/02/15 职场文书
小学生开学第一课活动方案
2014/03/27 职场文书
应急处置方案
2014/06/16 职场文书
优秀团队申报材料
2014/12/26 职场文书
努力学习保证书
2015/02/26 职场文书
党风廉政建设个人总结
2015/03/06 职场文书
财务经理岗位职责范本
2015/04/08 职场文书
go语言中http超时引发的事故解决
2021/06/02 Golang