OpenCV中resize函数插值算法的实现过程(五种)


Posted in Python onJune 05, 2021

最新版OpenCV2.4.7中,cv::resize函数有五种插值算法:最近邻、双线性、双三次、基于像素区域关系、兰索斯插值。下面用for循环代替cv::resize函数来说明其详细的插值实现过程,其中部分代码摘自于cv::resize函数中的源代码。

每种插值算法的前部分代码是相同的,如下:

cv::Mat matSrc, matDst1, matDst2;
 
	matSrc = cv::imread("lena.jpg", 2 | 4);
	matDst1 = cv::Mat(cv::Size(800, 1000), matSrc.type(), cv::Scalar::all(0));
	matDst2 = cv::Mat(matDst1.size(), matSrc.type(), cv::Scalar::all(0));
 
	double scale_x = (double)matSrc.cols / matDst1.cols;
	double scale_y = (double)matSrc.rows / matDst1.rows;

1、最近邻:公式,

OpenCV中resize函数插值算法的实现过程(五种)

for (int i = 0; i < matDst1.cols; ++i)
	{
		int sx = cvFloor(i * scale_x);
		sx = std::min(sx, matSrc.cols - 1);
		for (int j = 0; j < matDst1.rows; ++j)
		{
			int sy = cvFloor(j * scale_y);
			sy = std::min(sy, matSrc.rows - 1);
			matDst1.at<cv::Vec3b>(j, i) = matSrc.at<cv::Vec3b>(sy, sx);
		}
	}
	cv::imwrite("nearest_1.jpg", matDst1);
 
	cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 0);
	cv::imwrite("nearest_2.jpg", matDst2);

2、双线性:由相邻的四像素(2*2)计算得出,公式,

OpenCV中resize函数插值算法的实现过程(五种)

uchar* dataDst = matDst1.data;
	int stepDst = matDst1.step;
	uchar* dataSrc = matSrc.data;
	int stepSrc = matSrc.step;
	int iWidthSrc = matSrc.cols;
	int iHiehgtSrc = matSrc.rows;
 
	for (int j = 0; j < matDst1.rows; ++j)
	{
		float fy = (float)((j + 0.5) * scale_y - 0.5);
		int sy = cvFloor(fy);
		fy -= sy;
		sy = std::min(sy, iHiehgtSrc - 2);
		sy = std::max(0, sy);
 
		short cbufy[2];
		cbufy[0] = cv::saturate_cast<short>((1.f - fy) * 2048);
		cbufy[1] = 2048 - cbufy[0];
 
		for (int i = 0; i < matDst1.cols; ++i)
		{
			float fx = (float)((i + 0.5) * scale_x - 0.5);
			int sx = cvFloor(fx);
			fx -= sx;
 
			if (sx < 0) {
				fx = 0, sx = 0;
			}
			if (sx >= iWidthSrc - 1) {
				fx = 0, sx = iWidthSrc - 2;
			}
 
			short cbufx[2];
			cbufx[0] = cv::saturate_cast<short>((1.f - fx) * 2048);
			cbufx[1] = 2048 - cbufx[0];
 
			for (int k = 0; k < matSrc.channels(); ++k)
			{
				*(dataDst+ j*stepDst + 3*i + k) = (*(dataSrc + sy*stepSrc + 3*sx + k) * cbufx[0] * cbufy[0] + 
					*(dataSrc + (sy+1)*stepSrc + 3*sx + k) * cbufx[0] * cbufy[1] + 
					*(dataSrc + sy*stepSrc + 3*(sx+1) + k) * cbufx[1] * cbufy[0] + 
					*(dataSrc + (sy+1)*stepSrc + 3*(sx+1) + k) * cbufx[1] * cbufy[1]) >> 22;
			}
		}
	}
	cv::imwrite("linear_1.jpg", matDst1);
 
	cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 1);
	cv::imwrite("linear_2.jpg", matDst2);

3、双三次:由相邻的4*4像素计算得出,公式类似于双线性

int iscale_x = cv::saturate_cast<int>(scale_x);
	int iscale_y = cv::saturate_cast<int>(scale_y);
 
	for (int j = 0; j < matDst1.rows; ++j)
	{
		float fy = (float)((j + 0.5) * scale_y - 0.5);
		int sy = cvFloor(fy);
		fy -= sy;
		sy = std::min(sy, matSrc.rows - 3);
		sy = std::max(1, sy);
 
		const float A = -0.75f;
 
		float coeffsY[4];
		coeffsY[0] = ((A*(fy + 1) - 5*A)*(fy + 1) + 8*A)*(fy + 1) - 4*A;
		coeffsY[1] = ((A + 2)*fy - (A + 3))*fy*fy + 1;
		coeffsY[2] = ((A + 2)*(1 - fy) - (A + 3))*(1 - fy)*(1 - fy) + 1;
		coeffsY[3] = 1.f - coeffsY[0] - coeffsY[1] - coeffsY[2];
 
		short cbufY[4];
		cbufY[0] = cv::saturate_cast<short>(coeffsY[0] * 2048);
		cbufY[1] = cv::saturate_cast<short>(coeffsY[1] * 2048);
		cbufY[2] = cv::saturate_cast<short>(coeffsY[2] * 2048);
		cbufY[3] = cv::saturate_cast<short>(coeffsY[3] * 2048);
 
		for (int i = 0; i < matDst1.cols; ++i)
		{
			float fx = (float)((i + 0.5) * scale_x - 0.5);
			int sx = cvFloor(fx);
			fx -= sx;
 
			if (sx < 1) {
				fx = 0, sx = 1;
			}
			if (sx >= matSrc.cols - 3) {
				fx = 0, sx = matSrc.cols - 3;
			}
 
			float coeffsX[4];
			coeffsX[0] = ((A*(fx + 1) - 5*A)*(fx + 1) + 8*A)*(fx + 1) - 4*A;
			coeffsX[1] = ((A + 2)*fx - (A + 3))*fx*fx + 1;
			coeffsX[2] = ((A + 2)*(1 - fx) - (A + 3))*(1 - fx)*(1 - fx) + 1;
			coeffsX[3] = 1.f - coeffsX[0] - coeffsX[1] - coeffsX[2];
 
			short cbufX[4];
			cbufX[0] = cv::saturate_cast<short>(coeffsX[0] * 2048);
			cbufX[1] = cv::saturate_cast<short>(coeffsX[1] * 2048);
			cbufX[2] = cv::saturate_cast<short>(coeffsX[2] * 2048);
			cbufX[3] = cv::saturate_cast<short>(coeffsX[3] * 2048);
 
			for (int k = 0; k < matSrc.channels(); ++k)
			{
				matDst1.at<cv::Vec3b>(j, i)[k] = abs((matSrc.at<cv::Vec3b>(sy-1, sx-1)[k] * cbufX[0] * cbufY[0] + matSrc.at<cv::Vec3b>(sy, sx-1)[k] * cbufX[0] * cbufY[1] +
					matSrc.at<cv::Vec3b>(sy+1, sx-1)[k] * cbufX[0] * cbufY[2] + matSrc.at<cv::Vec3b>(sy+2, sx-1)[k] * cbufX[0] * cbufY[3] +
					matSrc.at<cv::Vec3b>(sy-1, sx)[k] * cbufX[1] * cbufY[0] + matSrc.at<cv::Vec3b>(sy, sx)[k] * cbufX[1] * cbufY[1] +
					matSrc.at<cv::Vec3b>(sy+1, sx)[k] * cbufX[1] * cbufY[2] + matSrc.at<cv::Vec3b>(sy+2, sx)[k] * cbufX[1] * cbufY[3] +
					matSrc.at<cv::Vec3b>(sy-1, sx+1)[k] * cbufX[2] * cbufY[0] + matSrc.at<cv::Vec3b>(sy, sx+1)[k] * cbufX[2] * cbufY[1] +
					matSrc.at<cv::Vec3b>(sy+1, sx+1)[k] * cbufX[2] * cbufY[2] + matSrc.at<cv::Vec3b>(sy+2, sx+1)[k] * cbufX[2] * cbufY[3] +
					matSrc.at<cv::Vec3b>(sy-1, sx+2)[k] * cbufX[3] * cbufY[0] + matSrc.at<cv::Vec3b>(sy, sx+2)[k] * cbufX[3] * cbufY[1] +
					matSrc.at<cv::Vec3b>(sy+1, sx+2)[k] * cbufX[3] * cbufY[2] + matSrc.at<cv::Vec3b>(sy+2, sx+2)[k] * cbufX[3] * cbufY[3] ) >> 22);
			}
		}
	}
	cv::imwrite("cubic_1.jpg", matDst1);
 
	cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 2);
	cv::imwrite("cubic_2.jpg", matDst2);

4、基于像素区域关系:共分三种情况,图像放大时类似于双线性插值,图像缩小(x轴、y轴同时缩小)又分两种情况,此情况下可以避免波纹出现。

#ifdef _MSC_VER
	cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 3);
	cv::imwrite("E:/GitCode/OpenCV_Test/test_images/area_2.jpg", matDst2);
#else
	cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 3);
	cv::imwrite("area_2.jpg", matDst2);
#endif
 
	fprintf(stdout, "==== start area ====\n");
	double inv_scale_x = 1. / scale_x;
	double inv_scale_y = 1. / scale_y;
	int iscale_x = cv::saturate_cast<int>(scale_x);
	int iscale_y = cv::saturate_cast<int>(scale_y);
	bool is_area_fast = std::abs(scale_x - iscale_x) < DBL_EPSILON && std::abs(scale_y - iscale_y) < DBL_EPSILON;
 
	if (scale_x >= 1 && scale_y >= 1)  { // zoom out
		if (is_area_fast)  { // integer multiples
			for (int j = 0; j < matDst1.rows; ++j) {
				int sy = std::min(cvFloor(j * scale_y), matSrc.rows - 1);
 
				for (int i = 0; i < matDst1.cols; ++i) {
					int sx = std::min(cvFloor(i * scale_x), matSrc.cols -1);
 
					matDst1.at<cv::Vec3b>(j, i) = matSrc.at<cv::Vec3b>(sy, sx);
				}
			}
#ifdef _MSC_VER
			cv::imwrite("E:/GitCode/OpenCV_Test/test_images/area_1.jpg", matDst1);
#else
			cv::imwrite("area_1.jpg", matDst1);
#endif
			return 0;
		}
 
		for (int j = 0; j < matDst1.rows; ++j) {
			double fsy1 = j * scale_y;
			double fsy2 = fsy1 + scale_y;
			double cellHeight = cv::min(scale_y, matSrc.rows - fsy1);
 
			int sy1 = cvCeil(fsy1), sy2 = cvFloor(fsy2);
 
			sy2 = std::min(sy2, matSrc.rows - 2);
			sy1 = std::min(sy1, sy2);
 
			float cbufy[2];
			cbufy[0] = (float)((sy1 - fsy1) / cellHeight);
			cbufy[1] = (float)(std::min(std::min(fsy2 - sy2, 1.), cellHeight) / cellHeight);
 
			for (int i = 0; i < matDst1.cols; ++i) {
				double fsx1 = i * scale_x;
				double fsx2 = fsx1 + scale_x;
				double cellWidth = std::min(scale_x, matSrc.cols - fsx1);
 
				int sx1 = cvCeil(fsx1), sx2 = cvFloor(fsx2);
 
				sx2 = std::min(sx2, matSrc.cols - 2);
				sx1 = std::min(sx1, sx2);
 
				float cbufx[2];
				cbufx[0] = (float)((sx1 - fsx1) / cellWidth);
				cbufx[1] = (float)(std::min(std::min(fsx2 - sx2, 1.), cellWidth) / cellWidth);
 
				for (int k = 0; k < matSrc.channels(); ++k) {
					matDst1.at<cv::Vec3b>(j, i)[k] = (uchar)(matSrc.at<cv::Vec3b>(sy1, sx1)[k] * cbufx[0] * cbufy[0] +
						matSrc.at<cv::Vec3b>(sy1 + 1, sx1)[k] * cbufx[0] * cbufy[1] +
						matSrc.at<cv::Vec3b>(sy1, sx1 + 1)[k] * cbufx[1] * cbufy[0] +
						matSrc.at<cv::Vec3b>(sy1 + 1, sx1 + 1)[k] * cbufx[1] * cbufy[1]);
				}
			}
		}
#ifdef _MSC_VER
		cv::imwrite("E:/GitCode/OpenCV_Test/test_images/area_1.jpg", matDst1);
#else
		cv::imwrite("area_1.jpg", matDst1);
#endif
 
		return 0;
	}
 
	//zoom in,it is emulated using some variant of bilinear interpolation
	for (int j = 0; j < matDst1.rows; ++j) {
		int  sy = cvFloor(j * scale_y);
		float fy = (float)((j + 1) - (sy + 1) * inv_scale_y);
		fy = fy <= 0 ? 0.f : fy - cvFloor(fy);
		sy = std::min(sy, matSrc.rows - 2);
 
		short cbufy[2];
		cbufy[0] = cv::saturate_cast<short>((1.f - fy) * 2048);
		cbufy[1] = 2048 - cbufy[0];
 
		for (int i = 0; i < matDst1.cols; ++i) {
			int sx = cvFloor(i * scale_x);
			float fx = (float)((i + 1) - (sx + 1) * inv_scale_x);
			fx = fx < 0 ? 0.f : fx - cvFloor(fx);
 
			if (sx < 0) {
				fx = 0, sx = 0;
			}
 
			if (sx >= matSrc.cols - 1) {
				fx = 0, sx = matSrc.cols - 2;
			}
 
			short cbufx[2];
			cbufx[0] = cv::saturate_cast<short>((1.f - fx) * 2048);
			cbufx[1] = 2048 - cbufx[0];
 
			for (int k = 0; k < matSrc.channels(); ++k) {
				matDst1.at<cv::Vec3b>(j, i)[k] = (matSrc.at<cv::Vec3b>(sy, sx)[k] * cbufx[0] * cbufy[0] +
					matSrc.at<cv::Vec3b>(sy + 1, sx)[k] * cbufx[0] * cbufy[1] +
					matSrc.at<cv::Vec3b>(sy, sx + 1)[k] * cbufx[1] * cbufy[0] +
					matSrc.at<cv::Vec3b>(sy + 1, sx + 1)[k] * cbufx[1] * cbufy[1]) >> 22;
			}
		}
	}
	fprintf(stdout, "==== end area ====\n");
 
#ifdef _MSC_VER
	cv::imwrite("E:/GitCode/OpenCV_Test/test_images/area_1.jpg", matDst1);
#else
	cv::imwrite("area_1.jpg", matDst1);
#endif

注:以上基于area进行图像缩小的代码有问题,具体实现代码可以参考https://github.com/fengbingchun/OpenCV_Test/blob/master/src/fbc_cv/include/resize.hpp,用法如下:

fbc::Mat3BGR src(matSrc.rows, matSrc.cols, matSrc.data);
fbc::Mat3BGR dst(matDst1.rows, matDst1.cols, matDst1.data);
fbc::resize(src, dst, 3);

5、兰索斯插值:由相邻的8*8像素计算得出,公式类似于双线性

int iscale_x = cv::saturate_cast<int>(scale_x);
	int iscale_y = cv::saturate_cast<int>(scale_y);
 
	for (int j = 0; j < matDst1.rows; ++j)
	{
		float fy = (float)((j + 0.5) * scale_y - 0.5);
		int sy = cvFloor(fy);
		fy -= sy;
		sy = std::min(sy, matSrc.rows - 5);
		sy = std::max(3, sy);
 
		const double s45 = 0.70710678118654752440084436210485;
		const double cs[][2] = {{1, 0}, {-s45, -s45}, {0, 1}, {s45, -s45}, {-1, 0}, {s45, s45}, {0, -1}, {-s45, s45}};
		float coeffsY[8];
 
		if (fy < FLT_EPSILON) {
			for (int t = 0; t < 8; t++)
				coeffsY[t] = 0;
			coeffsY[3] = 1;
		} else {
			float sum = 0;
			double y0 = -(fy + 3) * CV_PI * 0.25, s0 = sin(y0), c0 = cos(y0);
 
			for (int t = 0; t < 8; ++t)
			{
				double dy = -(fy + 3 -t) * CV_PI * 0.25;
				coeffsY[t] = (float)((cs[t][0] * s0 + cs[t][1] * c0) / (dy * dy));
				sum += coeffsY[t];
			}
 
			sum = 1.f / sum;
			for (int t = 0; t < 8; ++t)
				coeffsY[t] *= sum;
		}
 
		short cbufY[8];
		cbufY[0] = cv::saturate_cast<short>(coeffsY[0] * 2048);
		cbufY[1] = cv::saturate_cast<short>(coeffsY[1] * 2048);
		cbufY[2] = cv::saturate_cast<short>(coeffsY[2] * 2048);
		cbufY[3] = cv::saturate_cast<short>(coeffsY[3] * 2048);
		cbufY[4] = cv::saturate_cast<short>(coeffsY[4] * 2048);
		cbufY[5] = cv::saturate_cast<short>(coeffsY[5] * 2048);
		cbufY[6] = cv::saturate_cast<short>(coeffsY[6] * 2048);
		cbufY[7] = cv::saturate_cast<short>(coeffsY[7] * 2048);
 
		for (int i = 0; i < matDst1.cols; ++i)
		{
			float fx = (float)((i + 0.5) * scale_x - 0.5);
			int sx = cvFloor(fx);
			fx -= sx;
 
			if (sx < 3) {
				fx = 0, sx = 3;
			}
			if (sx >= matSrc.cols - 5) {
				fx = 0, sx = matSrc.cols - 5;
			}
 
			float coeffsX[8];
 
			if (fx < FLT_EPSILON) {
				for ( int t = 0; t < 8; t++ )
					coeffsX[t] = 0;
				coeffsX[3] = 1;
			} else {
				float sum = 0;
				double x0 = -(fx + 3) * CV_PI * 0.25, s0 = sin(x0), c0 = cos(x0);
 
				for (int t = 0; t < 8; ++t)
				{
					double dx = -(fx + 3 -t) * CV_PI * 0.25;
					coeffsX[t] = (float)((cs[t][0] * s0 + cs[t][1] * c0) / (dx * dx));
					sum += coeffsX[t];
				}
 
				sum = 1.f / sum;
				for (int t = 0; t < 8; ++t)
					coeffsX[t] *= sum;
			}
 
			short cbufX[8];
			cbufX[0] = cv::saturate_cast<short>(coeffsX[0] * 2048);
			cbufX[1] = cv::saturate_cast<short>(coeffsX[1] * 2048);
			cbufX[2] = cv::saturate_cast<short>(coeffsX[2] * 2048);
			cbufX[3] = cv::saturate_cast<short>(coeffsX[3] * 2048);
			cbufX[4] = cv::saturate_cast<short>(coeffsX[4] * 2048);
			cbufX[5] = cv::saturate_cast<short>(coeffsX[5] * 2048);
			cbufX[6] = cv::saturate_cast<short>(coeffsX[6] * 2048);
			cbufX[7] = cv::saturate_cast<short>(coeffsX[7] * 2048);
 
			for (int k = 0; k < matSrc.channels(); ++k)
			{
				matDst1.at<cv::Vec3b>(j, i)[k] = abs((matSrc.at<cv::Vec3b>(sy-3, sx-3)[k] * cbufX[0] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx-3)[k] * cbufX[0] * cbufY[1] +
					matSrc.at<cv::Vec3b>(sy-1, sx-3)[k] * cbufX[0] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx-3)[k] * cbufX[0] * cbufY[3] +
					matSrc.at<cv::Vec3b>(sy+1, sx-3)[k] * cbufX[0] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx-3)[k] * cbufX[0] * cbufY[5] +
					matSrc.at<cv::Vec3b>(sy+3, sx-3)[k] * cbufX[0] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx-3)[k] * cbufX[0] * cbufY[7] +
 
					matSrc.at<cv::Vec3b>(sy-3, sx-2)[k] * cbufX[1] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx-2)[k] * cbufX[1] * cbufY[1] +
					matSrc.at<cv::Vec3b>(sy-1, sx-2)[k] * cbufX[1] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx-2)[k] * cbufX[1] * cbufY[3] +
					matSrc.at<cv::Vec3b>(sy+1, sx-2)[k] * cbufX[1] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx-2)[k] * cbufX[1] * cbufY[5] +
					matSrc.at<cv::Vec3b>(sy+3, sx-2)[k] * cbufX[1] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx-2)[k] * cbufX[1] * cbufY[7] +
 
					matSrc.at<cv::Vec3b>(sy-3, sx-1)[k] * cbufX[2] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx-1)[k] * cbufX[2] * cbufY[1] +
					matSrc.at<cv::Vec3b>(sy-1, sx-1)[k] * cbufX[2] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx-1)[k] * cbufX[2] * cbufY[3] +
					matSrc.at<cv::Vec3b>(sy+1, sx-1)[k] * cbufX[2] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx-1)[k] * cbufX[2] * cbufY[5] +
					matSrc.at<cv::Vec3b>(sy+3, sx-1)[k] * cbufX[2] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx-1)[k] * cbufX[2] * cbufY[7] +
 
					matSrc.at<cv::Vec3b>(sy-3, sx)[k] * cbufX[3] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx)[k] * cbufX[3] * cbufY[1] +
					matSrc.at<cv::Vec3b>(sy-1, sx)[k] * cbufX[3] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx)[k] * cbufX[3] * cbufY[3] +
					matSrc.at<cv::Vec3b>(sy+1, sx)[k] * cbufX[3] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx)[k] * cbufX[3] * cbufY[5] +
					matSrc.at<cv::Vec3b>(sy+3, sx)[k] * cbufX[3] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx)[k] * cbufX[3] * cbufY[7] +
 
					matSrc.at<cv::Vec3b>(sy-3, sx+1)[k] * cbufX[4] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx+1)[k] * cbufX[4] * cbufY[1] +
					matSrc.at<cv::Vec3b>(sy-1, sx+1)[k] * cbufX[4] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx+1)[k] * cbufX[4] * cbufY[3] +
					matSrc.at<cv::Vec3b>(sy+1, sx+1)[k] * cbufX[4] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx+1)[k] * cbufX[4] * cbufY[5] +
					matSrc.at<cv::Vec3b>(sy+3, sx+1)[k] * cbufX[4] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx+1)[k] * cbufX[4] * cbufY[7] +
 
					matSrc.at<cv::Vec3b>(sy-3, sx+2)[k] * cbufX[5] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx+2)[k] * cbufX[5] * cbufY[1] +
					matSrc.at<cv::Vec3b>(sy-1, sx+2)[k] * cbufX[5] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx+2)[k] * cbufX[5] * cbufY[3] +
					matSrc.at<cv::Vec3b>(sy+1, sx+2)[k] * cbufX[5] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx+2)[k] * cbufX[5] * cbufY[5] +
					matSrc.at<cv::Vec3b>(sy+3, sx+2)[k] * cbufX[5] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx+2)[k] * cbufX[5] * cbufY[7] +
 
					matSrc.at<cv::Vec3b>(sy-3, sx+3)[k] * cbufX[6] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx+3)[k] * cbufX[6] * cbufY[1] +
					matSrc.at<cv::Vec3b>(sy-1, sx+3)[k] * cbufX[6] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx+3)[k] * cbufX[6] * cbufY[3] +
					matSrc.at<cv::Vec3b>(sy+1, sx+3)[k] * cbufX[6] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx+3)[k] * cbufX[6] * cbufY[5] +
					matSrc.at<cv::Vec3b>(sy+3, sx+3)[k] * cbufX[6] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx+3)[k] * cbufX[6] * cbufY[7] +
 
					matSrc.at<cv::Vec3b>(sy-3, sx+4)[k] * cbufX[7] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx+4)[k] * cbufX[7] * cbufY[1] +
					matSrc.at<cv::Vec3b>(sy-1, sx+4)[k] * cbufX[7] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx+4)[k] * cbufX[7] * cbufY[3] +
					matSrc.at<cv::Vec3b>(sy+1, sx+4)[k] * cbufX[7] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx+4)[k] * cbufX[7] * cbufY[5] +
					matSrc.at<cv::Vec3b>(sy+3, sx+4)[k] * cbufX[7] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx+4)[k] * cbufX[7] * cbufY[7] ) >> 22);// 4194304
			}
		}
	}
	cv::imwrite("Lanczos_1.jpg", matDst1);
 
	cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 4);
	cv::imwrite("Lanczos_2.jpg", matDst2);

以上代码的实现结果与cv::resize函数相同,但是执行效率非常低,只是为了详细说明插值过程。OpenCV中默认采用C++ Concurrency进行优化加速,你也可以采用TBB、OpenMP等进行优化加速。

GitHubhttps://github.com/fengbingchun/OpenCV_Test/blob/master/demo/OpenCV_Test/test_opencv_funset.cpp

到此这篇关于OpenCV中resize函数插值算法的实现过程(五种)的文章就介绍到这了,更多相关OpenCV resize插值内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python类属性的延迟计算
Oct 22 Python
Python中字典(dict)合并的四种方法总结
Aug 10 Python
Python实现的双色球生成功能示例
Dec 18 Python
python在线编译器的简单原理及简单实现代码
Feb 02 Python
django1.11.1 models 数据库同步方法
May 30 Python
python 字符串和整数的转换方法
Jun 25 Python
python多进程并行代码实例
Sep 30 Python
python3 dict ndarray 存成json,并保留原数据精度的实例
Dec 06 Python
python将图片转base64,实现前端显示
Jan 09 Python
Python验证码截取识别代码实例
May 16 Python
python实现一次性封装多条sql语句(begin end)
Jun 06 Python
Python爬虫之Selenium中frame/iframe表单嵌套页面
Dec 04 Python
OpenCV全景图像拼接的实现示例
opencv 分类白天与夜景视频的方法
python如何利用traceback获取详细的异常信息
Jun 05 #Python
Python异常类型以及处理方法汇总
Jun 05 #Python
Python OpenCV 彩色与灰度图像的转换实现
Python深度学习之实现卷积神经网络
python opencv通过4坐标剪裁图片
Jun 05 #Python
You might like
Bo-Blog专用的给Windows服务器的IIS Rewrite程序
2007/08/26 PHP
php 多个submit提交表单 处理方法
2009/07/07 PHP
简单的PHP多图上传小程序代码
2011/07/17 PHP
php登陆页的密码处理方式分享
2013/10/14 PHP
php 生成签名及验证签名详解
2016/10/26 PHP
PHP面向对象程序设计继承用法简单示例
2018/12/28 PHP
[全兼容哦]--实用、简洁、炫酷的页面转入效果loing
2007/05/07 Javascript
监控 url fragment变化的js代码
2010/04/19 Javascript
node.js应用后台守护进程管理器Forever安装和使用实例
2014/06/01 Javascript
jquery中toggle函数交替使用问题
2015/06/22 Javascript
javascript 秒表计时器实现代码
2017/03/09 Javascript
React Native之TextInput组件解析示例
2017/08/22 Javascript
bootstrap可编辑下拉框jquery.editable-select
2017/10/12 jQuery
jQuery中的类名选择器(.class)用法简单示例
2018/05/14 jQuery
手把手教你实现 Promise的使用方法
2020/09/02 Javascript
vue+elementUI实现简单日历功能
2020/09/24 Javascript
Python中itertools模块用法详解
2014/09/25 Python
Python中不同进制互相转换(二进制、八进制、十进制和十六进制)
2015/04/05 Python
Request的中断和ErrorHandler实例解析
2018/02/12 Python
python 3.6.5 安装配置方法图文教程
2018/09/18 Python
Python3.4学习笔记之常用操作符,条件分支和循环用法示例
2019/03/01 Python
学python安装的软件总结
2019/10/12 Python
python3图片文件批量重命名处理
2019/10/31 Python
tensorflow 获取checkpoint中的变量列表实例
2020/02/11 Python
keras K.function获取某层的输出操作
2020/06/29 Python
HTML5声音录制/播放功能的实现代码
2018/05/03 HTML / CSS
全球度假村:Club Med
2017/11/27 全球购物
排序都有哪几种方法?请列举。用JAVA实现一个快速排序
2014/02/16 面试题
实习生的自我评价
2014/01/08 职场文书
党性锻炼的心得体会
2014/09/03 职场文书
党支部反对四风思想汇报
2014/10/10 职场文书
领导干部个人整改措施落实情况汇报
2014/10/29 职场文书
妇联2016年六一国际儿童节活动总结
2016/04/06 职场文书
一封真诚的自荐信帮你赢得机会
2019/05/07 职场文书
深入探讨opencv图像矫正算法实战
2021/05/21 Python
SpringBoot整合minio快速入门教程(代码示例)
2022/04/03 Java/Android