Python创建SQL数据库流程逐步讲解


Posted in Python onSeptember 23, 2022

前言

根据《2021年Stackoverflow开发者调查》,

SQL是最常用的五种编程语言之一。

所以,我们应该多投入时间来学习SQL。

由Storyset绘制的人物插图

但是有一个问题:

如何在没有数据库的情况下练习数据库查询呢?

在今天的文章中,让我们一起来解决这个基本问题,学习如何从零开始创建自己的MySQL数据库。在Python和一些外部库的帮助下,我们将创建一个简单的脚本,可以自动创建并使用随机生成的数据,填充我们的表格。

但是,在讨论实现细节之前,我们首先需要讨论一些先决条件。

注意:当然还有其他方法可以获取用于实践的SQL数据库(例如直接找资源下载),但使用Python和一些外部库可以为我们提供额外且有价值的实践机会。

先决条件

我们先从最基本的开始。

首先,需要安装MySQL Workbench并连接服务,接下来就可以开始建立数据库:

CREATE DATABASE IF NOT EXISTS your_database_name;

现在,我们只需要安装必要的python库,基本的设置就完成了。我们将要使用的库如下所示,可以通过终端轻松安装。

  1. NumPy: pip install numpy
  2. Sqlalchemy: pip install sqlalchemy
  3. Faker: pip install faker

创建脚本

完成基本设置后,我们可以开始编写python脚本了。

先用一些样板代码创建一个类,为我们提供一个蓝图,指导我们完成其余的实现。

import numpy as np
import sqlalchemy
from faker import Faker [python学习裙:90 3971231###
from sqlalchemy import Table, Column, Integer, String, MetaData, Date,
class SQLData:
    def __init__(self, server:str, db:str, uid:str, pwd:str) -> None:
        self.__fake = Faker()
        self.__server = server
        self.__db = db
        self.__uid = uid
        self.__pwd = pwd
        self.__tables = dict()
    def connect(self) -> None:
        pass
    def drop_all_tables(self) -> None:
        pass
    def create_tables(self) -> None:
        pass
    def populate_tables(self) -> None:
        pass

目前我们还没用特别高级的语法。

我们基本上只是创建了一个类,存储了数据库凭据供以后使用,导入了库,并定义了一些方法。

建立连接

我们要完成的第一件事是创建一个数据库连接。

幸运的是,我们可以利用python库sqlalchemy来完成大部分工作。

class SQLData:
    #...
    def connect(self) -> None:
        self.__engine = sqlalchemy.create_engine(
            f"mysql+pymysql://{self.__uid}:{self.__pwd}@{self.__server}/{self.__db}"
        )
        self.__conn = self.__engine.connect()
        self.__meta = MetaData(bind=self.__engine)

这个方法可以创建并存储3个对象作为实例属性。

首先,我们创建一个连接,作为sqlalchemy应用程序的起点,描述如何与特定类型的数据库/ DBAPI组合进行对话。

在我们的例子中,我们指定一个MySQL数据库并传入我们的凭据。

接下来,创建一个连接,它可以让我们执行SQL语句和一个元数据对象(一个容器),将数据库的不同功能放在一起,让我们关联和访问数据库表。

创建表格

现在,我们需要创建数据库表。

class SQLData:
    #...
    def create_tables(self) -> None:
        self.__tables['jobs'] = Table (
            'jobs', self.__meta,
            Column('job_id', Integer, primary_key=True, autoincrement=True, nullable=False),
            Column('description', String(255))
        )
        self.__tables['companies'] = Table(
            'companies', self.__meta,
            Column('company_id', Integer, primary_key=True, autoincrement=True, nullable=False),
            Column('name', String(255), nullable=False),
            Column('phrase', String(255)),
            Column('address', String(255)),
            Column('country', String(255)),
            Column('est_date', Date)
        )
        self.__tables['persons'] = Table(
            'persons', self.__meta,
            Column('person_id', Integer, primary_key=True, autoincrement=True, nullable=False),
            Column('job_id', Integer, ForeignKey('jobs.job_id'), nullable=False),
            Column('company_id', Integer, ForeignKey('companies.company_id'), nullable=False),
            Column('last_name', String(255), nullable=False),
            Column('first_name', String(255)),
            Column('date_of_birth', Date),
            Column('address', String(255)),
            Column('country', String(255)),
            Column('zipcode', String(10)),
            Column('salary', Integer)
        )
        self.__meta.create_all()

我们创建了3个表,并将它们存储在一个字典中,以供以后参考。

在sqlalchemy中创建表也非常简单。我们只需实例化一个新的表,提供表名、元数据对象,并指定不同的列。

在本例中,我们创建了一个job表、一个company表和一个person表。person表还通过了foreign kkey链接了其他表,这使数据库在实践SQL连接方面更加有趣。

定义了所有表格之后,我们只需调用MetaData对象的create_all()方法就好了。

生成一些随机数据

虽然我们创建了数据库表,但仍然没有任何数据可用。因此,我们需要生成一些随机数据并将其插入到表中。

class SQLData:
    #...
    def populate_tables(self) -> None:
        jobs_ins = list()
        companies_ins = list()
        persons_ins = list()
        for _ in range(100):
            record = dict()
            record['description'] = self.__fake.job()
            jobs_ins.append(record)
        for _ in range(100):
            record = dict()
            record['name'] = self.__fake.company()
            record['phrase'] = self.__fake.catch_phrase()
            record['address'] = self.__fake.street_address()
            record['country'] = self.__fake.country()
            record['est_date'] = self.__fake.date_of_birth()
            companies_ins.append(record)
        for _ in range(500):
            record = dict()
            record['job_id'] = np.random.randint(1, 100)
            record['company_id'] = np.random.randint(1, 100)
            record['last_name'] = self.__fake.last_name()
            record['first_name'] = self.__fake.first_name()
            record['date_of_birth'] = self.__fake.date_of_birth()
            record['address'] = self.__fake.street_address()
            record['country'] = self.__fake.country()
            record['zipcode'] = self.__fake.zipcode()
            record['salary'] = np.random.randint(60000, 150000)
            persons_ins.append(record)
        self.__conn.execute(self.__tables['jobs'].insert(), jobs_ins)
        self.__conn.execute(self.__tables['companies'].insert(), companies_ins)
        self.__conn.execute(self.__tables['persons'].insert(), persons_ins)

现在,我们可以利用Faker库来生成随机数据。

我们只需在for循环中使用随机生成的数据,创建一个由字典表示的新记录。然后将单个记录追加到可用于(多个)insert语句的列表中。

接下来,从连接对象中调用execute()方法,并将字典列表作为参数传递。

就是这样!我们成功实现了类—只需要把类实例化,并调用相关函数来创建数据库。

if __name__ == '__main__':
    sql = SQLData('localhost','yourdatabase','root','yourpassword')
    sql.connect()
    sql.create_tables()
    sql.populate_tables()

试着做一个查询

剩下的唯一一件事是——需要验证我们的数据库是否已经启动和运行,是否确实包含一些数据。

从基本的查询开始:

SELECT *
FROM jobs
LIMIT 10;

Python创建SQL数据库流程逐步讲解

基本查询结果[图片by作者]

看起来我们的脚本成功了,我们有一个包含实际数据的数据库。

现在,尝试一个更复杂的SQL语句:

SELECT
  p.first_name,
  p.last_name,
  p.salary,
  j.description
FROM
  persons AS p
JOIN
  jobs AS j ON
  p.job_id = j.job_id
WHERE
  p.salary > 130000
ORDER BY
  p.salary DESC;

Python创建SQL数据库流程逐步讲解

这个结果看起来很靠谱 – 可以说我们的数据库在正常运行。

结论

在本文中,我们学习了如何利用Python和一些外部库来用随机生成的数据创建我们自己的实践数据库。

虽然可以很容易地下载现有的数据库来开始练习SQL,但使用Python从头创建自己的数据库提供了额外的学习机会。由于SQL和Python经常紧密联系在一起,所以这些学习机会可能会特别有用。

到此这篇关于Python创建SQL数据库流程逐步讲解的文章就介绍到这了,更多相关Python创建SQL内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
在Python中使用SQLite的简单教程
Apr 29 Python
python学习笔记之调用eval函数出现invalid syntax错误问题
Oct 18 Python
python文件与目录操作实例详解
Feb 22 Python
python kmeans聚类简单介绍和实现代码
Feb 23 Python
使用python画社交网络图实例代码
Jul 10 Python
python+selenium 点击单选框-radio的实现方法
Sep 03 Python
python脚本实现mp4中的音频提取并保存在原目录
Feb 27 Python
Python自动化测试笔试面试题精选
Mar 12 Python
利用Python制作动态排名图的实现代码
Apr 09 Python
keras 简单 lstm实例(基于one-hot编码)
Jul 02 Python
Python接口自动化系列之unittest结合ddt的使用教程详解
Feb 23 Python
使用pandas读取表格数据并进行单行数据拼接的详细教程
Mar 03 Python
Python爬取奶茶店数据分析哪家最好喝以及性价比
Sep 23 #Python
使用python生成大量数据写入es数据库并查询操作(2)
Sep 23 #Python
Python sklearn分类决策树方法详解
详解Golang如何实现支持随机删除元素的堆
python中validators库的使用方法详解
Sep 23 #Python
Python pyecharts案例超市4年数据可视化分析
Aug 14 #Python
Python编写车票订购系统 Python实现快递收费系统
Aug 14 #Python
You might like
刚才在简化php的库,结果发现很多东西
2006/12/31 PHP
真正的ZIP文件操作类(php)
2007/07/21 PHP
php中将汉字转换成拼音的函数代码
2012/09/08 PHP
PHP实现图片上传并压缩
2015/12/22 PHP
PHP 并发场景的几种解决方案
2019/06/14 PHP
写出更好的JavaScript之undefined篇(上)
2009/11/22 Javascript
基于jquery的让页面控件不可用的实现代码
2010/04/27 Javascript
ASP.NET jQuery 实例16 通过控件CustomValidator验证RadioButtonList
2012/02/03 Javascript
Javascript 数组排序详解
2014/10/22 Javascript
js实现网页右上角滑出会自动消失大幅广告的方法
2015/02/27 Javascript
Bootstrap每天必学之标签页(Tab)插件
2020/08/09 Javascript
jQuery筛选数组之grep、each、inArray、map的用法及遍历json对象
2016/06/20 Javascript
浅析JS中的 map, filter, some, every, forEach, for in, for of 用法总结
2017/03/29 Javascript
JS请求servlet功能示例
2017/06/01 Javascript
Vue.extend构造器的详解
2017/07/17 Javascript
微信小程序使用video组件播放视频功能示例【附源码下载】
2017/12/08 Javascript
通过fastclick源码分析彻底解决tap“点透”
2017/12/24 Javascript
微信小程序实现页面下拉刷新和上拉加载功能详解
2018/12/03 Javascript
深入分析jQuery.one() 函数
2020/06/03 jQuery
在vue项目中利用popstate处理页面返回的操作介绍
2020/08/06 Javascript
浅谈对yield的初步理解
2017/05/29 Python
python实现随机调用一个浏览器打开网页
2018/04/21 Python
使用python语言,比较两个字符串是否相同的实例
2018/06/29 Python
详解flask表单提交的两种方式
2018/07/21 Python
python3实现名片管理系统
2020/11/29 Python
pandas基于时间序列的固定时间间隔求均值的方法
2019/07/04 Python
python读取.mat文件的数据及实例代码
2019/07/12 Python
Pandas DataFrame求差集的示例代码
2020/12/13 Python
为您的家、后院、车库等在线购物:Spreetail
2019/06/17 全球购物
阳光体育活动方案
2014/02/16 职场文书
《姥姥的剪纸》教学反思
2014/02/25 职场文书
财产保全担保书范文
2014/04/01 职场文书
药品营销策划方案
2014/06/15 职场文书
感恩老师演讲稿600字
2014/08/28 职场文书
颐和园英文导游词
2015/01/30 职场文书
小学教师节活动总结
2015/03/20 职场文书