使用python生成大量数据写入es数据库并查询操作(2)


Posted in Python onSeptember 23, 2022

前言 :

模拟学生个人信息写入es数据库,包括姓名、性别、年龄、特点、科目、成绩,创建时间。

方案一

在写入数据时未提前创建索引mapping,而是每插入一条数据都包含了索引的信息。

示例代码:【多线程写入数据】【一次性写入10000*1000条数据】  【本人亲测耗时3266秒】

from elasticsearch import Elasticsearch
from elasticsearch import helpers
from datetime import datetime
from queue import Queue
import random
import time
import threading
es = Elasticsearch(hosts='http://127.0.0.1:9200')
# print(es)
 
names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十']
sexs = ['男', '女']
age = [25, 28, 29, 32, 31, 26, 27, 30]
character = ['自信但不自负,不以自我为中心',
             '努力、积极、乐观、拼搏是我的人生信条',
             '抗压能力强,能够快速适应周围环境',
             '敢做敢拼,脚踏实地;做事认真负责,责任心强',
             '爱好所学专业,乐于学习新知识;对工作有责任心;踏实,热情,对生活充满激情',
             '主动性强,自学能力强,具有团队合作意识,有一定组织能力',
             '忠实诚信,讲原则,说到做到,决不推卸责任',
             '有自制力,做事情始终坚持有始有终,从不半途而废',
             '肯学习,有问题不逃避,愿意虚心向他人学习',
             '愿意以谦虚态度赞扬接纳优越者,权威者',
             '会用100%的热情和精力投入到工作中;平易近人',
             '为人诚恳,性格开朗,积极进取,适应力强、勤奋好学、脚踏实地',
             '有较强的团队精神,工作积极进取,态度认真']
subjects = ['语文', '数学', '英语', '生物', '地理']
grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
create_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
 
def save_to_es(num):
    """
    批量写入数据到es数据库
    :param num:
    :return:
    """
    start = time.time()
    action = [
        {
            "_index": "personal_info_10000000",
            "_type": "doc",
            "_id": i,
            "_source": {
                "id": i,
                "name": random.choice(names),
                "sex": random.choice(sexs),
                "age": random.choice(age),
                "character": random.choice(character),
                "subject": random.choice(subjects),
                "grade": random.choice(grades),
                "create_time": create_time
            }
        } for i in range(10000 * num, 10000 * num + 10000)
    ]
    helpers.bulk(es, action)
    end = time.time()
    print(f"{num}耗时{end - start}s!")
 
def run():
    global queue
    while queue.qsize() > 0:
        num = queue.get()
        print(num)
        save_to_es(num)

if __name__ == '__main__':
    start = time.time()
    queue = Queue()
    # 序号数据进队列
    for num in range(1000):
        queue.put(num)
 
    # 多线程执行程序
    consumer_lst = []
    for _ in range(10):
        thread = threading.Thread(target=run)
        thread.start()
        consumer_lst.append(thread)
    for consumer in consumer_lst:
        consumer.join()
    end = time.time()
    print('程序执行完毕!花费时间:', end - start)

运行结果:

使用python生成大量数据写入es数据库并查询操作(2)

使用python生成大量数据写入es数据库并查询操作(2)

使用python生成大量数据写入es数据库并查询操作(2)

 自动创建的索引mapping:

GET personal_info_10000000/_mapping
{
  "personal_info_10000000" : {
    "mappings" : {
      "properties" : {
        "age" : {
          "type" : "long"
        },
        "character" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "create_time" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "grade" : {
          "type" : "long"
        },
        "id" : {
          "type" : "long"
        },
        "name" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "sex" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "subject" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        }
      }
    }
  }
}

方案二

1.顺序插入5000000条数据

先创建索引personal_info_5000000,确定好mapping后,再插入数据。

新建索引并设置mapping信息:

PUT personal_info_5000000
{
  "settings": {
    "number_of_shards": 3,
    "number_of_replicas": 1
  },
  "mappings": {
    "properties": {
      "id": {
        "type": "long"
      },
      "name": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 32
          }
        }
      },
      "sex": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 8
          }
        }
      },
      "age": {
        "type": "long"
      },
      "character": {
        "type": "text",
        "analyzer": "ik_smart",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "subject": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "grade": {
        "type": "long"
      },
      "create_time": {
        "type": "date",
        "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
      }
    }
  }
}

查看新建索引信息:

GET personal_info_5000000
 
{
  "personal_info_5000000" : {
    "aliases" : { },
    "mappings" : {
      "properties" : {
        "age" : {
          "type" : "long"
        },
        "character" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          },
          "analyzer" : "ik_smart"
        },
        "create_time" : {
          "type" : "date",
          "format" : "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
        },
        "grade" : {
          "type" : "long"
        },
        "id" : {
          "type" : "long"
        },
        "name" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 32
            }
          }
        },
        "sex" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 8
            }
          }
        },
        "subject" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        }
      }
    },
    "settings" : {
      "index" : {
        "routing" : {
          "allocation" : {
            "include" : {
              "_tier_preference" : "data_content"
            }
          }
        },
        "number_of_shards" : "3",
        "provided_name" : "personal_info_50000000",
        "creation_date" : "1663471072176",
        "number_of_replicas" : "1",
        "uuid" : "5DfmfUhUTJeGk1k4XnN-lQ",
        "version" : {
          "created" : "7170699"
        }
      }
    }
  }
}

开始插入数据:

示例代码: 【单线程写入数据】【一次性写入10000*500条数据】  【本人亲测耗时7916秒】

from elasticsearch import Elasticsearch
from datetime import datetime
from queue import Queue
import random
import time
import threading
es = Elasticsearch(hosts='http://127.0.0.1:9200')
# print(es)
names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十']
sexs = ['男', '女']
age = [25, 28, 29, 32, 31, 26, 27, 30]
character = ['自信但不自负,不以自我为中心',
             '努力、积极、乐观、拼搏是我的人生信条',
             '抗压能力强,能够快速适应周围环境',
             '敢做敢拼,脚踏实地;做事认真负责,责任心强',
             '爱好所学专业,乐于学习新知识;对工作有责任心;踏实,热情,对生活充满激情',
             '主动性强,自学能力强,具有团队合作意识,有一定组织能力',
             '忠实诚信,讲原则,说到做到,决不推卸责任',
             '有自制力,做事情始终坚持有始有终,从不半途而废',
             '肯学习,有问题不逃避,愿意虚心向他人学习',
             '愿意以谦虚态度赞扬接纳优越者,权威者',
             '会用100%的热情和精力投入到工作中;平易近人',
             '为人诚恳,性格开朗,积极进取,适应力强、勤奋好学、脚踏实地',
             '有较强的团队精神,工作积极进取,态度认真']
subjects = ['语文', '数学', '英语', '生物', '地理']
grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
create_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
 
# 添加程序耗时的功能
def timer(func):
    def wrapper(*args, **kwargs):
        start = time.time()
        res = func(*args, **kwargs)
        end = time.time()
        print('id{}共耗时约 {:.2f} 秒'.format(*args, end - start))
        return res
 
    return wrapper
 
@timer
def save_to_es(num):
    """
    顺序写入数据到es数据库
    :param num:
    :return:
    """
    body = {
        "id": num,
        "name": random.choice(names),
        "sex": random.choice(sexs),
        "age": random.choice(age),
        "character": random.choice(character),
        "subject": random.choice(subjects),
        "grade": random.choice(grades),
        "create_time": create_time
    }
    # 此时若索引不存在时会新建
    es.index(index="personal_info_5000000", id=num, doc_type="_doc", document=body)
 
def run():
    global queue
    while queue.qsize() > 0:
        num = queue.get()
        print(num)
        save_to_es(num)
 
if __name__ == '__main__':
    start = time.time()
    queue = Queue()
    # 序号数据进队列
    for num in range(5000000):
        queue.put(num)
 
    # 多线程执行程序
    consumer_lst = []
    for _ in range(10):
        thread = threading.Thread(target=run)
        thread.start()
        consumer_lst.append(thread)
    for consumer in consumer_lst:
        consumer.join()
    end = time.time()
    print('程序执行完毕!花费时间:', end - start)

运行结果:

使用python生成大量数据写入es数据库并查询操作(2)

2.批量插入5000000条数据

先创建索引personal_info_5000000_v2,确定好mapping后,再插入数据。

新建索引并设置mapping信息:

PUT personal_info_5000000_v2
{
  "settings": {
    "number_of_shards": 3,
    "number_of_replicas": 1
  },
  "mappings": {
    "properties": {
      "id": {
        "type": "long"
      },
      "name": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 32
          }
        }
      },
      "sex": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 8
          }
        }
      },
      "age": {
        "type": "long"
      },
      "character": {
        "type": "text",
        "analyzer": "ik_smart",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "subject": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "grade": {
        "type": "long"
      },
      "create_time": {
        "type": "date",
        "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
      }
    }
  }
}

查看新建索引信息:

GET personal_info_5000000_v2
 
{
  "personal_info_5000000_v2" : {
    "aliases" : { },
    "mappings" : {
      "properties" : {
        "age" : {
          "type" : "long"
        },
        "character" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          },
          "analyzer" : "ik_smart"
        },
        "create_time" : {
          "type" : "date",
          "format" : "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
        },
        "grade" : {
          "type" : "long"
        },
        "id" : {
          "type" : "long"
        },
        "name" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 32
            }
          }
        },
        "sex" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 8
            }
          }
        },
        "subject" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        }
      }
    },
    "settings" : {
      "index" : {
        "routing" : {
          "allocation" : {
            "include" : {
              "_tier_preference" : "data_content"
            }
          }
        },
        "number_of_shards" : "3",
        "provided_name" : "personal_info_5000000_v2",
        "creation_date" : "1663485323617",
        "number_of_replicas" : "1",
        "uuid" : "XBPaDn_gREmAoJmdRyBMAA",
        "version" : {
          "created" : "7170699"
        }
      }
    }
  }
}

批量插入数据:

通过elasticsearch模块导入helper,通过helper.bulk来批量处理大量的数据。首先将所有的数据定义成字典形式,各字段含义如下:

  • _index对应索引名称,并且该索引必须存在。
  • _type对应类型名称。
  • _source对应的字典内,每一篇文档的字段和值,可有有多个字段。

示例代码:  【程序中途异常,写入4714000条数据】

from elasticsearch import Elasticsearch
from elasticsearch import helpers
from datetime import datetime
from queue import Queue
import random
import time
import threading
es = Elasticsearch(hosts='http://127.0.0.1:9200')
# print(es)
names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十']
sexs = ['男', '女']
age = [25, 28, 29, 32, 31, 26, 27, 30]
character = ['自信但不自负,不以自我为中心',
             '努力、积极、乐观、拼搏是我的人生信条',
             '抗压能力强,能够快速适应周围环境',
             '敢做敢拼,脚踏实地;做事认真负责,责任心强',
             '爱好所学专业,乐于学习新知识;对工作有责任心;踏实,热情,对生活充满激情',
             '主动性强,自学能力强,具有团队合作意识,有一定组织能力',
             '忠实诚信,讲原则,说到做到,决不推卸责任',
             '有自制力,做事情始终坚持有始有终,从不半途而废',
             '肯学习,有问题不逃避,愿意虚心向他人学习',
             '愿意以谦虚态度赞扬接纳优越者,权威者',
             '会用100%的热情和精力投入到工作中;平易近人',
             '为人诚恳,性格开朗,积极进取,适应力强、勤奋好学、脚踏实地',
             '有较强的团队精神,工作积极进取,态度认真']
subjects = ['语文', '数学', '英语', '生物', '地理']
grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
create_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
# 添加程序耗时的功能
def timer(func):
    def wrapper(*args, **kwargs):
        start = time.time()
        res = func(*args, **kwargs)
        end = time.time()
        print('id{}共耗时约 {:.2f} 秒'.format(*args, end - start))
        return res
 
    return wrapper
 
 
@timer
def save_to_es(num):
    """
    批量写入数据到es数据库
    :param num:
    :return:
    """
    action = [
        {
            "_index": "personal_info_5000000_v2",
            "_type": "_doc",
            "_id": i,
            "_source": {
                "id": i,
                "name": random.choice(names),
                "sex": random.choice(sexs),
                "age": random.choice(age),
                "character": random.choice(character),
                "subject": random.choice(subjects),
                "grade": random.choice(grades),
                "create_time": create_time
            }
        } for i in range(10000 * num, 10000 * num + 10000)
    ]
    helpers.bulk(es, action)
def run():
    global queue
    while queue.qsize() > 0:
        num = queue.get()
        print(num)
        save_to_es(num)
if __name__ == '__main__':
    start = time.time()
    queue = Queue()
    # 序号数据进队列
    for num in range(500):
        queue.put(num)
 
    # 多线程执行程序
    consumer_lst = []
    for _ in range(10):
        thread = threading.Thread(target=run)
        thread.start()
        consumer_lst.append(thread)
    for consumer in consumer_lst:
        consumer.join()
    end = time.time()
    print('程序执行完毕!花费时间:', end - start)

运行结果:

使用python生成大量数据写入es数据库并查询操作(2)

使用python生成大量数据写入es数据库并查询操作(2)

3.批量插入50000000条数据

先创建索引personal_info_5000000_v2,确定好mapping后,再插入数据。

此过程是在上面批量插入的前提下进行优化,采用python生成器。

建立索引和mapping同上,直接上代码:

示例代码: 【程序中途异常,写入3688000条数据】

from elasticsearch import Elasticsearch
from elasticsearch import helpers
from datetime import datetime
from queue import Queue
import random
import time
import threading
es = Elasticsearch(hosts='http://127.0.0.1:9200')
# print(es)
 
names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十']
sexs = ['男', '女']
age = [25, 28, 29, 32, 31, 26, 27, 30]
character = ['自信但不自负,不以自我为中心',
             '努力、积极、乐观、拼搏是我的人生信条',
             '抗压能力强,能够快速适应周围环境',
             '敢做敢拼,脚踏实地;做事认真负责,责任心强',
             '爱好所学专业,乐于学习新知识;对工作有责任心;踏实,热情,对生活充满激情',
             '主动性强,自学能力强,具有团队合作意识,有一定组织能力',
             '忠实诚信,讲原则,说到做到,决不推卸责任',
             '有自制力,做事情始终坚持有始有终,从不半途而废',
             '肯学习,有问题不逃避,愿意虚心向他人学习',
             '愿意以谦虚态度赞扬接纳优越者,权威者',
             '会用100%的热情和精力投入到工作中;平易近人',
             '为人诚恳,性格开朗,积极进取,适应力强、勤奋好学、脚踏实地',
             '有较强的团队精神,工作积极进取,态度认真']
subjects = ['语文', '数学', '英语', '生物', '地理']
grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
create_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
 
# 添加程序耗时的功能
def timer(func):
    def wrapper(*args, **kwargs):
        start = time.time()
        res = func(*args, **kwargs)
        end = time.time()
        print('id{}共耗时约 {:.2f} 秒'.format(*args, end - start))
        return res
 
    return wrapper
@timer
def save_to_es(num):
    """
    使用生成器批量写入数据到es数据库
    :param num:
    :return:
    """
    action = (
        {
            "_index": "personal_info_5000000_v3",
            "_type": "_doc",
            "_id": i,
            "_source": {
                "id": i,
                "name": random.choice(names),
                "sex": random.choice(sexs),
                "age": random.choice(age),
                "character": random.choice(character),
                "subject": random.choice(subjects),
                "grade": random.choice(grades),
                "create_time": create_time
            }
        } for i in range(10000 * num, 10000 * num + 10000)
    )
    helpers.bulk(es, action)
 
def run():
    global queue
    while queue.qsize() > 0:
        num = queue.get()
        print(num)
        save_to_es(num)
 
if __name__ == '__main__':
    start = time.time()
    queue = Queue()
    # 序号数据进队列
    for num in range(500):
        queue.put(num)
 
    # 多线程执行程序
    consumer_lst = []
    for _ in range(10):
        thread = threading.Thread(target=run)
        thread.start()
        consumer_lst.append(thread)
    for consumer in consumer_lst:
        consumer.join()
    end = time.time()
    print('程序执行完毕!花费时间:', end - start)

运行结果:

使用python生成大量数据写入es数据库并查询操作(2)

使用python生成大量数据写入es数据库并查询操作(2)

到此这篇关于使用python生成大量数据写入es数据库并查询操作(2)的文章就介绍到这了,更多相关python生成 数据 内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python三元运算实现方法
Jan 12 Python
Python2.x中文乱码问题解决方法
Jun 02 Python
python实现爬虫统计学校BBS男女比例之多线程爬虫(二)
Dec 31 Python
Python实现备份MySQL数据库的方法示例
Jan 11 Python
对python 中re.sub,replace(),strip()的区别详解
Jul 22 Python
Python for i in range ()用法详解
Sep 18 Python
Python常用库大全及简要说明
Jan 17 Python
python实现梯度下降和逻辑回归
Mar 24 Python
numpy库reshape用法详解
Apr 19 Python
keras中的卷积层&池化层的用法
May 22 Python
ASP.NET Core中的配置详解
Feb 05 Python
使paramiko库执行命令时在给定的时间强制退出功能的实现
Mar 03 Python
Python sklearn分类决策树方法详解
详解Golang如何实现支持随机删除元素的堆
python中validators库的使用方法详解
Sep 23 #Python
Python pyecharts案例超市4年数据可视化分析
Aug 14 #Python
Python编写车票订购系统 Python实现快递收费系统
Aug 14 #Python
Golang Web 框架Iris安装部署
Aug 14 #Python
python manim实现排序算法动画示例
You might like
PHP与Java进行通信的实现方法
2013/10/21 PHP
PHP动态地创建属性和方法, 对象的复制, 对象的比较,加载指定的文件,自动加载类文件,命名空间
2016/05/06 PHP
基于mootools 1.3框架下的图片滑动效果代码
2011/04/22 Javascript
另一个javascript小测验(代码集合)
2011/07/27 Javascript
jquery scrollTop方法根据滚动像素显示隐藏顶部导航条
2013/05/27 Javascript
判定是否原生方法的JS代码
2013/11/12 Javascript
浅谈JS中的bind方法与函数柯里化
2016/08/10 Javascript
JavaScript正则表达式小结(test|match|search|replace|split|exec)
2016/12/08 Javascript
jQuery DOM节点的遍历方法小结
2017/08/15 jQuery
Vue中v-show添加表达式的问题(判断是否显示)
2018/03/26 Javascript
JS实现计算小于非负数n的素数的数量算法示例
2019/02/26 Javascript
优雅的处理vue项目异常实战记录
2019/06/05 Javascript
微信小程序发布新版本时自动提示用户更新的方法
2019/06/07 Javascript
vue-cli history模式实现tomcat部署报404的解决方式
2019/09/06 Javascript
Node.js API详解之 os模块用法实例分析
2020/05/06 Javascript
jQuery 常用特效实例小结【显示与隐藏、淡入淡出、滑动、动画等】
2020/05/19 jQuery
JavaScript实现多球运动效果
2020/09/07 Javascript
[02:04]2018DOTA2亚洲邀请赛Secret赛前采访
2018/04/03 DOTA
python多线程threading.Lock锁用法实例
2014/11/01 Python
使用Python中的cookielib模拟登录网站
2015/04/09 Python
Python常见格式化字符串方法小结【百分号与format方法】
2016/09/18 Python
python实现协同过滤推荐算法完整代码示例
2017/12/15 Python
解决Python3 抓取微信账单信息问题
2019/07/19 Python
python3 实现调用串口功能
2019/12/26 Python
简单了解django文件下载方式
2020/02/10 Python
Django 解决由save方法引发的错误
2020/05/21 Python
python 装饰器的实际作用有哪些
2020/09/07 Python
详解如何修改python中字典的键和值
2020/09/29 Python
让IE支持CSS3的不完全兼容方案
2014/09/19 HTML / CSS
美国时装品牌:Nautica(诺帝卡)
2016/08/28 全球购物
经理聘任证明
2015/03/02 职场文书
卫生院义诊活动总结
2015/05/07 职场文书
2016民族团结先进个人事迹材料
2016/02/26 职场文书
2019让人心动的商业计划书
2019/06/27 职场文书
python常见的占位符总结及用法
2021/07/02 Python
如何vue使用el-table遍历循环表头和表体数据
2022/04/26 Vue.js