keras CNN卷积核可视化,热度图教程


Posted in Python onJune 22, 2020

卷积核可视化

import matplotlib.pyplot as plt
import numpy as np
from keras import backend as K
from keras.models import load_model

# 将浮点图像转换成有效图像
def deprocess_image(x):
 # 对张量进行规范化
 x -= x.mean()
 x /= (x.std() + 1e-5)
 x *= 0.1
 x += 0.5
 x = np.clip(x, 0, 1)
 # 转化到RGB数组
 x *= 255
 x = np.clip(x, 0, 255).astype('uint8')
 return x

# 可视化滤波器
def kernelvisual(model, layer_target=1, num_iterate=100):
 # 图像尺寸和通道
 img_height, img_width, num_channels = K.int_shape(model.input)[1:4]
 num_out = K.int_shape(model.layers[layer_target].output)[-1]

 plt.suptitle('[%s] convnet filters visualizing' % model.layers[layer_target].name)

 print('第%d层有%d个通道' % (layer_target, num_out))
 for i_kernal in range(num_out):
  input_img = model.input
  # 构建一个损耗函数,使所考虑的层的第n个滤波器的激活最大化,-1层softmax层
  if layer_target == -1:
   loss = K.mean(model.output[:, i_kernal])
  else:
   loss = K.mean(model.layers[layer_target].output[:, :, :, i_kernal]) # m*28*28*128
  # 计算图像对损失函数的梯度
  grads = K.gradients(loss, input_img)[0]
  # 效用函数通过其L2范数标准化张量
  grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)
  # 此函数返回给定输入图像的损耗和梯度
  iterate = K.function([input_img], [loss, grads])
  # 从带有一些随机噪声的灰色图像开始
  np.random.seed(0)
  # 随机图像
  # input_img_data = np.random.randint(0, 255, (1, img_height, img_width, num_channels)) # 随机
  # input_img_data = np.zeros((1, img_height, img_width, num_channels)) # 零值
  input_img_data = np.random.random((1, img_height, img_width, num_channels)) * 20 + 128. # 随机灰度
  input_img_data = np.array(input_img_data, dtype=float)
  failed = False
  # 运行梯度上升
  print('####################################', i_kernal + 1)
  loss_value_pre = 0
  # 运行梯度上升num_iterate步
  for i in range(num_iterate):
   loss_value, grads_value = iterate([input_img_data])
   if i % int(num_iterate/5) == 0:
    print('Iteration %d/%d, loss: %f' % (i, num_iterate, loss_value))
    print('Mean grad: %f' % np.mean(grads_value))
    if all(np.abs(grads_val) < 0.000001 for grads_val in grads_value.flatten()):
     failed = True
     print('Failed')
     break
    if loss_value_pre != 0 and loss_value_pre > loss_value:
     break
    if loss_value_pre == 0:
     loss_value_pre = loss_value
    # if loss_value > 0.99:
    #  break
   input_img_data += grads_value * 1 # e-3
  img_re = deprocess_image(input_img_data[0])
  if num_channels == 1:
   img_re = np.reshape(img_re, (img_height, img_width))
  else:
   img_re = np.reshape(img_re, (img_height, img_width, num_channels))
  plt.subplot(np.ceil(np.sqrt(num_out)), np.ceil(np.sqrt(num_out)), i_kernal + 1)
  plt.imshow(img_re) # , cmap='gray'
  plt.axis('off')

 plt.show()

运行

model = load_model('train3.h5')
kernelvisual(model,-1) # 对最终输出可视化
kernelvisual(model,6) # 对第二个卷积层可视化

keras CNN卷积核可视化,热度图教程

keras CNN卷积核可视化,热度图教程

热度图

import cv2
import matplotlib.pyplot as plt
import numpy as np
from keras import backend as K
from keras.preprocessing import image

def heatmap(model, data_img, layer_idx, img_show=None, pred_idx=None):
 # 图像处理
 if data_img.shape.__len__() != 4:
  # 由于用作输入的img需要预处理,用作显示的img需要原图,因此分开两个输入
  if img_show is None:
   img_show = data_img
  # 缩放
  input_shape = K.int_shape(model.input)[1:3]  # (28,28)
  data_img = image.img_to_array(image.array_to_img(data_img).resize(input_shape))
  # 添加一个维度->(1, 224, 224, 3)
  data_img = np.expand_dims(data_img, axis=0)
 if pred_idx is None:
  # 预测
  preds = model.predict(data_img)
  # 获取最高预测项的index
  pred_idx = np.argmax(preds[0])
 # 目标输出估值
 target_output = model.output[:, pred_idx]
 # 目标层的输出代表各通道关注的位置
 last_conv_layer_output = model.layers[layer_idx].output
 # 求最终输出对目标层输出的导数(优化目标层输出),代表目标层输出对结果的影响
 grads = K.gradients(target_output, last_conv_layer_output)[0]
 # 将每个通道的导数取平均,值越高代表该通道影响越大
 pooled_grads = K.mean(grads, axis=(0, 1, 2))
 iterate = K.function([model.input], [pooled_grads, last_conv_layer_output[0]])
 pooled_grads_value, conv_layer_output_value = iterate([data_img])
 # 将各通道关注的位置和各通道的影响乘起来
 for i in range(conv_layer_output_value.shape[-1]):
  conv_layer_output_value[:, :, i] *= pooled_grads_value[i]

 # 对各通道取平均得图片位置对结果的影响
 heatmap = np.mean(conv_layer_output_value, axis=-1)
 # 规范化
 heatmap = np.maximum(heatmap, 0)
 heatmap /= np.max(heatmap)
 # plt.matshow(heatmap)
 # plt.show()
 # 叠加图片
 # 缩放成同等大小
 heatmap = cv2.resize(heatmap, (img_show.shape[1], img_show.shape[0]))
 heatmap = np.uint8(255 * heatmap)
 # 将热图应用于原始图像.由于opencv热度图为BGR,需要转RGB
 superimposed_img = img_show + cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)[:,:,::-1] * 0.4
 # 截取转uint8
 superimposed_img = np.minimum(superimposed_img, 255).astype('uint8')
 return superimposed_img, heatmap
 # 显示图片
 # plt.imshow(superimposed_img)
 # plt.show()
 # 保存为文件
 # superimposed_img = img + cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) * 0.4
 # cv2.imwrite('ele.png', superimposed_img)

# 生成所有卷积层的热度图
def heatmaps(model, data_img, img_show=None):
 if img_show is None:
  img_show = np.array(data_img)
 # Resize
 input_shape = K.int_shape(model.input)[1:3] # (28,28,1)
 data_img = image.img_to_array(image.array_to_img(data_img).resize(input_shape))
 # 添加一个维度->(1, 224, 224, 3)
 data_img = np.expand_dims(data_img, axis=0)
 # 预测
 preds = model.predict(data_img)
 # 获取最高预测项的index
 pred_idx = np.argmax(preds[0])
 print("预测为:%d(%f)" % (pred_idx, preds[0][pred_idx]))
 indexs = []
 for i in range(model.layers.__len__()):
  if 'conv' in model.layers[i].name:
   indexs.append(i)
 print('模型共有%d个卷积层' % indexs.__len__())
 plt.suptitle('heatmaps for each conv')
 for i in range(indexs.__len__()):
  ret = heatmap(model, data_img, indexs[i], img_show=img_show, pred_idx=pred_idx)
  plt.subplot(np.ceil(np.sqrt(indexs.__len__()*2)), np.ceil(np.sqrt(indexs.__len__()*2)), i*2 + 1)\
   .set_title(model.layers[indexs[i]].name)
  plt.imshow(ret[0])
  plt.axis('off')
  plt.subplot(np.ceil(np.sqrt(indexs.__len__()*2)), np.ceil(np.sqrt(indexs.__len__()*2)), i*2 + 2)\
   .set_title(model.layers[indexs[i]].name)
  plt.imshow(ret[1])
  plt.axis('off')
 plt.show()

运行

from keras.applications.vgg16 import VGG16
from keras.applications.vgg16 import preprocess_input

model = VGG16(weights='imagenet')
data_img = image.img_to_array(image.load_img('elephant.png'))
# VGG16预处理:RGB转BGR,并对每一个颜色通道去均值中心化
data_img = preprocess_input(data_img)
img_show = image.img_to_array(image.load_img('elephant.png'))

heatmaps(model, data_img, img_show)

elephant.png

keras CNN卷积核可视化,热度图教程

keras CNN卷积核可视化,热度图教程

结语

踩坑踩得我脚疼

以上这篇keras CNN卷积核可视化,热度图教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python的Flask框架中实现分页功能的教程
Apr 20 Python
在Django的模型中执行原始SQL查询的方法
Jul 21 Python
Python优化技巧之利用ctypes提高执行速度
Sep 11 Python
[原创]教女朋友学Python3(二)简单的输入输出及内置函数查看
Nov 30 Python
详解Python最长公共子串和最长公共子序列的实现
Jul 07 Python
django框架之cookie/session的使用示例(小结)
Oct 15 Python
pip安装py_zipkin时提示的SSL问题对应
Dec 29 Python
Python3.5迭代器与生成器用法实例分析
Apr 30 Python
使用Python进行中文繁简转换的实现代码
Oct 18 Python
用python实现一个简单的验证码
Dec 09 Python
基于注解实现 SpringBoot 接口防刷的方法
Mar 02 Python
Python利用zhdate模块实现农历日期处理
Mar 31 Python
python实现斗地主分牌洗牌
Jun 22 #Python
解决Keras使用GPU资源耗尽的问题
Jun 22 #Python
Keras - GPU ID 和显存占用设定步骤
Jun 22 #Python
Python 基于jwt实现认证机制流程解析
Jun 22 #Python
python中format函数如何使用
Jun 22 #Python
Tensorflow与Keras自适应使用显存方式
Jun 22 #Python
python数据类型强制转换实例详解
Jun 22 #Python
You might like
php中支持多种编码的中文字符串截取函数!
2007/03/20 PHP
首页四格,首页五格For6.0(GBK)(UTF-8)[12种组合][9-18][版主安装测试通过]
2007/09/24 PHP
PHP5与MySQL数据库操作常用代码 收集
2010/03/21 PHP
浅谈Laravel中的一个后期静态绑定
2017/08/11 PHP
thinkphp5 URL和路由的功能详解与实例
2017/12/26 PHP
IE浏览器PNG图片透明效果代码
2008/09/02 Javascript
javascript void(0)的妙用
2009/10/21 Javascript
input输入框的自动匹配(原生代码)
2013/03/19 Javascript
bootstrap折叠调用collapse()后data-parent不生效的快速解决办法
2017/02/23 Javascript
详解在Vue中通过自定义指令获取dom元素
2017/03/04 Javascript
vue使用Axios做ajax请求详解
2017/06/07 Javascript
elementUI select组件value值注意事项详解
2019/05/29 Javascript
基于Vue el-autocomplete 实现类似百度搜索框功能
2019/10/25 Javascript
15分钟学会vue项目改造成SSR(小白教程)
2019/12/17 Javascript
基于Vue的侧边目录组件的实现
2020/02/05 Javascript
基于elementUI竖向表格、和并列的案例
2020/10/26 Javascript
Python多线程实例教程
2014/09/06 Python
在Python中使用CasperJS获取JS渲染生成的HTML内容的教程
2015/04/09 Python
Python函数式编程指南(二):从函数开始
2015/06/24 Python
Windows下安装python MySQLdb遇到的问题及解决方法
2017/03/16 Python
python 调用有道api接口的方法
2019/01/03 Python
python中使用ctypes调用so传参设置遇到的问题及解决方法
2019/06/19 Python
django框架创建应用操作示例
2019/09/26 Python
python3实现弹弹球小游戏
2019/11/25 Python
python实现两个一维列表合并成一个二维列表
2019/12/02 Python
解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题
2020/06/12 Python
利用Canvas模仿百度贴吧客户端loading小球的方法示例
2017/08/13 HTML / CSS
介绍一下Mysql的存储引擎
2015/02/12 面试题
生物科学专业个人求职信范文
2013/12/05 职场文书
村官工作鉴定评语
2014/01/27 职场文书
授权委托书范文
2014/07/31 职场文书
CSS3 菱形拼图实现只旋转div 背景图片不旋转功能
2021/03/30 HTML / CSS
使用Selenium实现微博爬虫(预登录、展开全文、翻页)
2021/04/13 Python
pycharm debug 断点调试心得分享
2021/04/16 Python
Redis 持久化 RDB 与 AOF的执行过程
2021/11/07 Redis
JavaScript实例 ODO List分析
2022/01/22 Javascript