利用Python裁切tiff图像且读取tiff,shp文件的实例


Posted in Python onMarch 10, 2020

我就废话不多说了,还是直接看代码吧!

from osgeo import gdal, gdalnumeric, ogr
from PIL import Image, ImageDraw
from osgeo import gdal_array
import os
import operator
from functools import reduce
gdal.UseExceptions()
 

def readTif(fileName):
  dataset = gdal.Open(fileName)
  if dataset == None:
    print(fileName+"文件无法打开")
    return
  im_width = dataset.RasterXSize #栅格矩阵的列数
  im_height = dataset.RasterYSize #栅格矩阵的行数
  im_bands = dataset.RasterCount #波段数
  band1=dataset.GetRasterBand(1)
  print(band1)
  print ('Band Type=',gdal.GetDataTypeName(band1.DataType))
  im_data = dataset.ReadAsArray(0,0,im_width,im_height)#获取数据
  im_geotrans = dataset.GetGeoTransform()#获取仿射矩阵信息
  im_proj = dataset.GetProjection()#获取投影信息
  im_blueBand = im_data[0,0:im_height,0:im_width]#获取蓝波段
  im_greenBand = im_data[1,0:im_height,0:im_width]#获取绿波段
  im_redBand =  im_data[2,0:im_height,0:im_width]#获取红波段
  im_nirBand = im_data[3,0:im_height,0:im_width]#获取近红外波段

  return(im_width,im_height,im_bands,im_data,im_geotrans
      ,im_proj,im_blueBand,im_greenBand,im_redBand,im_nirBand)

#保存tif文件函数
import gdal
import numpy as np
def writeTiff(im_data,im_width,im_height,im_bands,im_geotrans,im_proj,path):
  if 'int8' in im_data.dtype.name:
    datatype = gdal.GDT_Byte
  elif 'int16' in im_data.dtype.name:
    datatype = gdal.GDT_UInt16
  else:
    datatype = gdal.GDT_Float32

  if len(im_data.shape) == 3:
    im_bands, im_height, im_width = im_data.shape
  elif len(im_data.shape) == 2:
    im_data = np.array([im_data])
  else:
    im_bands, (im_height, im_width) = 1,im_data.shape
    #创建文件
  driver = gdal.GetDriverByName("GTiff")
  dataset = driver.Create(path, im_width, im_height, im_bands, datatype)
  if(dataset!= None):
    dataset.SetGeoTransform(im_geotrans) #写入仿射变换参数
    dataset.SetProjection(im_proj) #写入投影
  for i in range(im_bands):
    dataset.GetRasterBand(i+1).WriteArray(im_data[i])
  del dataset
 
# This function will convert the rasterized clipper shapefile
# to a mask for use within GDAL.
def imageToArray(i):
  """
  Converts a Python Imaging Library array to a
  gdalnumeric image.
  """
  a=gdalnumeric.fromstring(i.tobytes(),'b')
  a.shape=i.im.size[1], i.im.size[0]
  return a

 
def arrayToImage(a):
  """
  Converts a gdalnumeric array to a
  Python Imaging Library Image.
  """
  i=Image.frombytes('L',(a.shape[1],a.shape[0]),
      (a.astype('b')).tobytes())
  return i
 
def world2Pixel(geoMatrix, x, y):
  """
  Uses a gdal geomatrix (gdal.GetGeoTransform()) to calculate
  the pixel location of a geospatial coordinate
  """
  ulX = geoMatrix[0]
  ulY = geoMatrix[3]
  xDist = geoMatrix[1]
  pixel = int((x - ulX) / xDist)
  line = int((ulY - y) / xDist)
  return (pixel, line)
 
#
# EDIT: this is basically an overloaded
# version of the gdal_array.OpenArray passing in xoff, yoff explicitly
# so we can pass these params off to CopyDatasetInfo
#
def OpenArray( array, prototype_ds = None, xoff=0, yoff=0 ):
  ds =gdal_array.OpenArray(array)
 
  if ds is not None and prototype_ds is not None:
    if type(prototype_ds).__name__ == 'str':
      prototype_ds = gdal.Open( prototype_ds )
    if prototype_ds is not None:
      gdalnumeric.CopyDatasetInfo( prototype_ds, ds, xoff=xoff, yoff=yoff )
  return ds

def histogram(a, bins=range(0,256)):
  """
  Histogram function for multi-dimensional array.
  a = array
  bins = range of numbers to match
  """
  fa = a.flat
  n = gdalnumeric.searchsorted(gdalnumeric.sort(fa), bins)
  n = gdalnumeric.concatenate([n, [len(fa)]])
  hist = n[1:]-n[:-1]
  return hist
 
def stretch(a):
  """
  Performs a histogram stretch on a gdalnumeric array image.
  """
  hist = histogram(a)
  im = arrayToImage(a)
  lut = []
  for b in range(0, len(hist), 256):
    # step size
    step = reduce(operator.add, hist[b:b+256]) / 255
    # create equalization lookup table
    n = 0
    for i in range(256):
      lut.append(n / step)
      n = n + hist[i+b]
    im = im.point(lut)
  return imageToArray(im)
 
def main( shapefile_path, raster_path ):
  # Load the source data as a gdalnumeric array
  srcArray = gdalnumeric.LoadFile(raster_path)
 
  # Also load as a gdal image to get geotransform
  # (world file) info
  srcImage = gdal.Open(raster_path)
  geoTrans = srcImage.GetGeoTransform()
 
  # Create an OGR layer from a boundary shapefile
  shapef = ogr.Open(shapefile_path)
  lyr = shapef.GetLayer( os.path.split( os.path.splitext( shapefile_path )[0] )[1] )
  poly = lyr.GetNextFeature()
 
  # Convert the layer extent to image pixel coordinates
  minX, maxX, minY, maxY = lyr.GetExtent()
  ulX, ulY = world2Pixel(geoTrans, minX, maxY)
  lrX, lrY = world2Pixel(geoTrans, maxX, minY)
 
  # Calculate the pixel size of the new image
  pxWidth = int(lrX - ulX)
  pxHeight = int(lrY - ulY)
 
  clip = srcArray[:, ulY:lrY, ulX:lrX]
 
  #
  # EDIT: create pixel offset to pass to new image Projection info
  #
  xoffset = ulX
  yoffset = ulY
  print ("Xoffset, Yoffset = ( %f, %f )" % ( xoffset, yoffset ))
 
  # Create a new geomatrix for the image
  geoTrans = list(geoTrans)
  geoTrans[0] = minX
  geoTrans[3] = maxY
 
  # Map points to pixels for drawing the
  # boundary on a blank 8-bit,
  # black and white, mask image.
  points = []
  pixels = []
  geom = poly.GetGeometryRef()
  pts = geom.GetGeometryRef(0)
  for p in range(pts.GetPointCount()):
   points.append((pts.GetX(p), pts.GetY(p)))
  for p in points:
   pixels.append(world2Pixel(geoTrans, p[0], p[1]))
  rasterPoly = Image.new("L", (pxWidth, pxHeight), 1)
  rasterize = ImageDraw.Draw(rasterPoly)
  rasterize.polygon(pixels, 0)
  mask = imageToArray(rasterPoly)
 
  # Clip the image using the mask
  clip = gdalnumeric.choose(mask, \
    (clip, 0)).astype(gdalnumeric.uint8)
 
  # This image has 3 bands so we stretch each one to make them
  # visually brighter
  for i in range(4):
   clip[i,:,:] = stretch(clip[i,:,:])
 
  # Save new tiff
  #
  # EDIT: instead of SaveArray, let's break all the
  # SaveArray steps out more explicity so
  # we can overwrite the offset of the destination
  # raster
  #
  ### the old way using SaveArray
  #
  # gdalnumeric.SaveArray(clip, "OUTPUT.tif", format="GTiff", prototype=raster_path)
  #
  ###
  #
  gtiffDriver = gdal.GetDriverByName( 'GTiff' )
  if gtiffDriver is None:
    raise ValueError("Can't find GeoTiff Driver")
  gtiffDriver.CreateCopy( "beijing1.tif",
    OpenArray( clip, prototype_ds=raster_path, xoff=xoffset, yoff=yoffset )
  )
  print(raster_path)
   
  # Save as an 8-bit jpeg for an easy, quick preview
  clip = clip.astype(gdalnumeric.uint8)
  gdalnumeric.SaveArray(clip, "beijing1.jpg", format="JPEG")
 
  gdal.ErrorReset()

 
if __name__ == '__main__': 
  #shapefile_path, raster_path 
  shapefile_path = r'C:\Users\Administrator\Desktop\裁切shp\New_Shapefile.shp' 
  raster_path = r'C:\Users\Administrator\Desktop\2230542.tiff' 
   
  main( shapefile_path, raster_path )

补充知识:python代码裁剪tiff影像图和转换成png格式+裁剪Png图片

先来看一下需要转换的tiff原始图的信息,如下图所示。

利用Python裁切tiff图像且读取tiff,shp文件的实例

tiff转换成png和裁剪tiff的代码(opencv)

import cv2 as cv
import os

"""
  转换tiff格式为png + 横向裁剪tiff遥感影像图
"""
def Convert_To_Png_AndCut(dir):
  files = os.listdir(dir)
  ResultPath1 = "./RS_ToPngDir/" # 定义转换格式后的保存路径
  ResultPath2 = "./RS_Cut_Result/" # 定义裁剪后的保存路径
  ResultPath3 = "./RS_Cut_Result/" # 定义裁剪后的保存路径
  for file in files: # 这里可以去掉for循环
    a, b = os.path.splitext(file) # 拆分影像图的文件名称
    this_dir = os.path.join(dir + file) # 构建保存 路径+文件名
    
    img = cv.imread(this_dir, 1) # 读取tif影像
    # 第二个参数是通道数和位深的参数,
    # IMREAD_UNCHANGED = -1 # 不进行转化,比如保存为了16位的图片,读取出来仍然为16位。
    # IMREAD_GRAYSCALE = 0 # 进行转化为灰度图,比如保存为了16位的图片,读取出来为8位,类型为CV_8UC1。
    # IMREAD_COLOR = 1  # 进行转化为RGB三通道图像,图像深度转为8位
    # IMREAD_ANYDEPTH = 2 # 保持图像深度不变,进行转化为灰度图。
    # IMREAD_ANYCOLOR = 4 # 若图像通道数小于等于3,则保持原通道数不变;若通道数大于3则只取取前三个通道。图像深度转为8位
    
    cv.imwrite(ResultPath1 + a + "_" + ".png", img) # 保存为png格式
    
    # 下面开始裁剪-不需要裁剪tiff格式的可以直接注释掉
    hight = img.shape[0] #opencv写法,获取宽和高
    width = img.shape[1]
    #定义裁剪尺寸
    w = 480 # 宽度
    h = 360 # 高度
    _id = 1 # 裁剪结果保存文件名:0 - N 升序方式
    i = 0
    while (i + h <= hight): # 控制高度,图像多余固定尺寸总和部分不要了
      j = 0
      while (j + w <= width):  # 控制宽度,图像多余固定尺寸总和部分不要了
        cropped = img[i:i + h, j:j + w] # 裁剪坐标为[y0:y1, x0:x1]
        cv.imwrite(ResultPath2 + a + "_" + str(_id) + b, cropped)
        _id += 1
        j += w
      i = i + h
"""
  横向裁剪PNG图
"""
def toCutPng(dir):
  files = os.listdir(dir)
  ResultPath = "./RS_CutPng_Result/" # 定义裁剪后的保存路径
  for file in files:
    a, b = os.path.splitext(file) # 拆分影像图的文件名称
    this_dir = os.path.join(dir + file)
    img = Image.open(this_dir) # 按顺序打开某图片
    width, hight = img.size
    w = 480 # 宽度
    h = 360 # 高度
    _id = 1 # 裁剪结果保存文件名:0 - N 升序方式
    y = 0
    while (y + h <= hight): # 控制高度,图像多余固定尺寸总和部分不要了
      x = 0
      while (x + w <= width):  # 控制宽度,图像多余固定尺寸总和部分不要了
        new_img = img.crop((x, y, x + w, y + h))
        new_img.save(ResultPath + a + "_" + str(_id) + b)
        _id += 1
        x += w
      y = y + h

if __name__ == '__main__':
  _path = r"./RS_TiffDir/"  # 遥感tiff影像所在路径
  # 裁剪影像图
  Convert_To_Png_AndCut(_path)

将转换成png后的图加载到软件中(专业软件ENVI5.3)查看结果详细信息如下图所示,成功的转换成png格式了。

利用Python裁切tiff图像且读取tiff,shp文件的实例

下面是加载裁剪后的影像图(Tiff格式的)

利用Python裁切tiff图像且读取tiff,shp文件的实例

def toCutPng(dir):函数效果图如下图所示。

以上这篇利用Python裁切tiff图像且读取tiff,shp文件的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
打开电脑上的QQ的python代码
Feb 10 Python
使用setup.py安装python包和卸载python包的方法
Nov 27 Python
解决python3中自定义wsgi函数,make_server函数报错的问题
Nov 21 Python
基于python内置函数与匿名函数详解
Jan 09 Python
Python程序运行原理图文解析
Feb 10 Python
Python 实现一行输入多个值的方法
Apr 21 Python
python 读写文件,按行修改文件的方法
Jul 12 Python
tensorflow使用神经网络实现mnist分类
Sep 08 Python
CentOS下Python3的安装及创建虚拟环境的方法
Nov 28 Python
python web自制框架之接受url传递过来的参数实例
Dec 17 Python
Python双链表原理与实现方法详解
Feb 22 Python
用opencv给图片换背景色的示例代码
Jul 08 Python
GDAL 矢量属性数据修改方式(python)
Mar 10 #Python
使用Python开发个京东上抢口罩的小实例(仅作技术研究学习使用)
Mar 10 #Python
python 获取当前目录下的文件目录和文件名实例代码详解
Mar 10 #Python
python爬虫开发之使用Python爬虫库requests多线程抓取猫眼电影TOP100实例
Mar 10 #Python
Django 404、500页面全局配置知识点详解
Mar 10 #Python
python使用gdal对shp读取,新建和更新的实例
Mar 10 #Python
Python实现获取当前目录下文件名代码详解
Mar 10 #Python
You might like
PHP压缩html网页代码(清除空格,换行符,制表符,注释标记)
2012/04/02 PHP
php反射应用示例
2014/02/25 PHP
PHP 魔术变量和魔术函数详解
2015/02/25 PHP
PHP+mysql实现从数据库获取下拉树功能示例
2017/01/06 PHP
PHP检查文件是否存在,不存在自动创建及读取文件内容操作示例
2020/01/23 PHP
JavaScript回调(callback)函数概念自我理解及示例
2013/07/04 Javascript
js 异步操作回调函数如何控制执行顺序
2013/12/24 Javascript
用js控制组织结构图可以任意拖拽到指定位置
2014/01/17 Javascript
JS 新增Cookie 取cookie值 删除cookie 举例详解
2014/10/10 Javascript
jQuery中:button选择器用法实例
2015/01/04 Javascript
JavaScript检测浏览器cookie是否已经启动的方法
2015/02/27 Javascript
JavaSciprt中处理字符串之sup()方法的使用教程
2015/06/08 Javascript
jQuery中使用animate自定义动画的方法
2016/05/29 Javascript
JavaScript面向对象编写购物车功能
2016/08/19 Javascript
实例讲解vue源码架构
2019/01/24 Javascript
vue中实现点击按钮滚动到页面对应位置的方法(使用c3平滑属性实现)
2019/12/29 Javascript
vue设置全局访问接口API地址操作
2020/08/14 Javascript
解决antd 下拉框 input [defaultValue] 的值的问题
2020/10/31 Javascript
微信小程序实现通讯录列表展开收起
2020/11/18 Javascript
[03:07]2015国际邀请赛选手档案EHOME.rOtK 是什么让他落泪?
2015/07/31 DOTA
[02:07]TI9显影之尘系列 - Vici Gaming
2019/08/20 DOTA
跟老齐学Python之有容乃大的list(4)
2014/09/28 Python
python实现FTP服务器服务的方法
2017/04/11 Python
Pycharm设置界面全黑的方法
2018/05/23 Python
python实现五子棋游戏
2019/06/18 Python
解决Python列表字符不区分大小写的问题
2019/12/19 Python
利用Tensorflow的队列多线程读取数据方式
2020/02/05 Python
详解CSS3的opacity属性设置透明效果的用法
2016/05/09 HTML / CSS
美国知名的摄影器材销售网站:Adorama
2017/02/01 全球购物
UGG英国官方网站:UGG UK
2018/02/08 全球购物
法国房车租赁网站:Yescapa
2019/08/26 全球购物
乌克兰巴士票购买网站:inBus
2021/03/12 全球购物
销售求职信范文
2014/05/26 职场文书
房屋分割离婚协议书范本
2014/12/01 职场文书
学校教学管理制度
2015/08/06 职场文书
创业计划书之都市休闲农庄
2019/12/28 职场文书