python 基于opencv实现图像增强


Posted in Python onDecember 23, 2020

为了得到更加清晰的图像我们需要通过技术对图像进行处理,比如使用对比度增强的方法来处理图像,对比度增强就是对图像输出的灰度级放大到指定的程度,获得图像质量的提升。本文主要通过代码的方式,通过OpenCV的内置函数将图像处理到我们理想的结果。

灰度直方图

灰度直方图通过描述灰度级在图像矩阵中的像素个数来展示图像灰度级的信息,通过灰度直方图的统计我们可以看到每个灰度值的占有率。下面是一个灰度直方图的实现:

import cv2
import numpy as np
import sys
import matplotlib.pyplot as plt

#计算灰度直方图
def calcGrayHist(image):
  rows,clos = image.shape
  #创建一个矩阵用于存储灰度值
  grahHist = np.zeros([256],np.uint64)
  print('这是初始化矩阵')
  print(grahHist )
  for r in range(rows):
    for c in range(clos):
      #通过图像矩阵的遍历来将灰度值信息放入我们定义的矩阵中
      grahHist[image[r][c]] +=1
  print('这是赋值后的矩阵')
  print(grahHist)
  return grahHist
if __name__=="__main__":
  image = cv2.imread("../img/aa.jpg",cv2.IMREAD_GRAYSCALE)
  grahHist = calcGrayHist(image)
  x_range = range(256)
  plt.plot(x_range,grahHist,'-',linewidth= 3,c='k')
  #设置坐标轴的范围
  y_maxValue = np.max(grahHist)
  plt.axis([0,255,0,y_maxValue])
  #设置标签
  plt.xlabel('gray Level')
  plt.ylabel("number of pixels")
  #显示灰度直方图
  plt.show()

运行结果

python 基于opencv实现图像增强

python 基于opencv实现图像增强

线性变换

线性变换的公式为:

python 基于opencv实现图像增强

图像的线性变换无疑就是利用矩阵的乘法就行线性变换,比如一个矩阵I ,2I,3I (np.unt8 ndarry类型就是unt8类型)就是一个矩阵的变换.

import cv2
import numpy as np
import sys

if __name__=="__main__":
  img = cv2.imread("../img/ae.jpg",cv2.IMREAD_GRAYSCALE)
  a=2
  #线性变换 定义float类型
  O = float(a)*img
  #数据截取 如果大于255 取 255
  O[0>255] = 255
  #数据类型的转换
  O = np.round(O)
  O = O.astype(np.uint8)
  cv2.imshow("img",img)
  cv2.imshow('enhance',O)
  cv2.waitKey(0)
  cv2.destroyAllWindows()

运行结果:

python 基于opencv实现图像增强

灰度级范围越大就代表对比度越高,反之对比度越低视觉上清晰度就越低。我们通过a=2的线性对比度拉伸将灰度级范围扩大到[0,255]之间,如上图我们改变灰度级的范围后图像变的清晰。

直方图正规化

将图像O中的最小灰度级记为OminOmin,最大灰度级记为OmaxOmax,假如输出的图像P的灰度级范围为[Pmin,PmaxPmin,Pmax],则O 与 P的关系为:

python 基于opencv实现图像增强

其中P(r,c)就代表P的第r行第c列的灰度值。这个过程就是直方图的正规化。我们一般令P的范围是[0,255],所以直方图的正规化是在求a,b变换的值的方法,我们可以得到:

python 基于opencv实现图像增强

下面我们使用OpenCV来实现上面的理论:

import cv2
import numpy as np
import sys
from enhance.GrayHist import mget
if __name__=="__main__":
  img = cv2.imread("../img/o3.jpg",cv2.IMREAD_GRAYSCALE)
  #求出img 的最大最小值
  Maximg = np.max(img)
  Minimg = np.min(img)
  print(Maximg, Minimg, '-----------')
  #输出最小灰度级和最大灰度级
  Omin,Omax = 0,255
  #求 a, b
  a = float(Omax - Omin)/(Maximg - Minimg)
  b = Omin - a*Minimg
  print(a,b,'-----------')
  #线性变换
  O = a*img + b
  O = O.astype(np.uint8)
  #利用灰度直方图进行比较 mget为GrayHist中的写方法
  mget(img)
  mget(O)


  cv2.imshow('img',img)
  cv2.imshow('enhance',O)
  cv2.waitKey(0)
  cv2.destroyAllWindows()

python 基于opencv实现图像增强

python 基于opencv实现图像增强

伽玛变换

将一张图的灰度值归至[0,1]后,对于8位图来说,除以255即可。伽玛变换就是令O(r,c)=I(r,c)γI(r,c)γ,0≤r<H,0≤≤r<H,0≤c<W.
当γγ等于1时图像不发生变换,而当γγ大于0且小于1时就可以增强图像的对比度,相反的当γγ大于1时就可以使图像对比度降低。 以下是伽玛变换在OpenCV中的实现:

import cv2
import numpy as np
import sys

# 伽玛变换 power函数实现幂函数

if __name__ == "__main__":
  img = cv2.imread("../img/ae.jpg", cv2.IMREAD_GRAYSCALE)
  # 归1
  Cimg = img / 255
  # 伽玛变换
  gamma = 0.5
  O = np.power(Cimg,gamma)
  #效果
  cv2.imshow('img',img)
  cv2.imshow('O',O)
  cv2.waitKey(0)
  cv2.destroyAllWindows()

运行结果:

python 基于opencv实现图像增强

直方图的均衡化

  • 计算图像的灰度直方图
  • 计算灰度直方图的累加直方图
  • 根据累加的直方图和直方图均衡化的原理得到输入灰度级与输出灰度级之间的映射关系
  • 使用循环的方式得到输出图像的每一个像素的灰度级
import cv2
import numpy as np
from enhance.GrayHist import calcGrayHist

#直方图的均衡化
if __name__ == "__main__":
  image = cv2.imread("../img/ae.jpg", cv2.IMREAD_GRAYSCALE)
  rows,cols = image.shape
  #计算灰度直方图
  grayHist = calcGrayHist(image)
  #计算累加灰度直方图
  zeroCumuMoment = np.zeros([256], np.uint32)
  for p in range(256):
    if p == 0:
      zeroCumuMoment[p] = grayHist[0]
    else:
      zeroCumuMoment[p] = zeroCumuMoment[p-1] + grayHist[p]
  #根据累加的灰度直方图得到输入与输出灰度级之间的映射关系
  output = np.zeros([256],np.uint8)
  cofficient = 256.0/(rows*cols)
  for p in range(256):
    q = cofficient * float(zeroCumuMoment[p])-1
    if q >=0:
      output[p] = np.math.floor(q)
    else:
      output[p] = 0
  #得出均衡化图像
  equalHistimg = np.zeros(image.shape,np.uint8)
  for r in range(rows):
    for c in range(cols):
      equalHistimg[r][c] = output[image[r][c]]
  cv2.imshow('image',image)
  cv2.imshow('histimage',equalHistimg)
  cv2.waitKey(0)
  cv2.destroyAllWindows()

运行结果:

python 基于opencv实现图像增强

以上就是python 基于opencv实现图像增强的详细内容,更多关于python opencv的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python连接mysql调用存储过程示例
Mar 05 Python
python将MongoDB里的ObjectId转换为时间戳的方法
Mar 13 Python
python简单读取大文件的方法
Jul 01 Python
Python编程实现双击更新所有已安装python模块的方法
Jun 05 Python
PyCharm 常用快捷键和设置方法
Dec 20 Python
使用python装饰器计算函数运行时间的实例
Apr 21 Python
关于Python 的简单栅格图像边界提取方法
Jul 05 Python
pytorch-神经网络拟合曲线实例
Jan 15 Python
pymysql 插入数据 转义处理方式
Mar 02 Python
Django DRF认证组件流程实现原理详解
Aug 17 Python
Python如何在bool函数中取值
Sep 21 Python
Python matplotlib绘制条形统计图 处理多个实验多组观测值
Apr 21 Python
python接口自动化框架实战
Dec 23 #Python
pycharm远程连接服务器并配置python interpreter的方法
Dec 23 #Python
python实现发送QQ邮件(可加附件)
Dec 23 #Python
如何通过安装HomeBrew来安装Python3
Dec 23 #Python
python实现定时发送邮件到指定邮箱
Dec 23 #Python
python实现定时发送邮件
Dec 23 #Python
python脚本定时发送邮件
Dec 22 #Python
You might like
PHP中array_slice函数用法实例详解
2014/11/25 PHP
Zend Framework分页类用法详解
2016/03/22 PHP
PHP文件上传处理案例分析
2016/10/15 PHP
JavaScript面向对象编程
2008/03/02 Javascript
简单方法判断JavaScript对象为null或者属性为空
2014/09/26 Javascript
jQuery实现的五子棋游戏实例
2015/06/13 Javascript
jQuery搜索框效果实现代码(百度关键词联想)
2021/02/25 Javascript
ES6中的Promise代码详解
2017/10/09 Javascript
vue实现消息的无缝滚动效果的示例代码
2017/12/05 Javascript
node基于puppeteer模拟登录抓取页面的实现
2018/05/09 Javascript
vue组件(全局,局部,动态加载组件)
2018/09/02 Javascript
对Vue.js之事件的绑定(v-on: 或者 @ )详解
2018/09/15 Javascript
微信小程序开发问题之wx.previewImage
2018/12/25 Javascript
layui表格 返回的数据状态异常的解决方法
2019/09/10 Javascript
基于layui的table插件进行复选框联动功能的实现方法
2019/09/19 Javascript
iview实现图片上传功能
2020/06/29 Javascript
mpvue 项目初始化及实现授权登录的实现方法
2020/07/20 Javascript
让python在hadoop上跑起来
2016/01/27 Python
使用Python的Twisted框架编写非阻塞程序的代码示例
2016/05/25 Python
解决python文件字符串转列表时遇到空行的问题
2017/07/09 Python
Python使用线程来接收串口数据的示例
2019/07/02 Python
PyQt Qt Designer工具的布局管理详解
2019/08/07 Python
python关闭占用端口方式
2019/12/17 Python
Python3 A*寻路算法实现方式
2019/12/24 Python
python中有关时间日期格式转换问题
2019/12/25 Python
python logging 重复写日志问题解决办法详解
2020/08/04 Python
Pyinstaller打包Scrapy项目的实现步骤
2020/09/22 Python
Python安装并操作redis实现流程详解
2020/10/13 Python
自动化专业毕业生自荐信
2013/11/01 职场文书
小学语文教学反思
2014/02/10 职场文书
计算机系统管理员求职信
2014/06/20 职场文书
初中优秀教师事迹材料
2014/08/18 职场文书
2014年教育工作总结
2014/11/26 职场文书
夫妻分居协议书范本
2014/11/28 职场文书
天气温馨提示语
2015/07/14 职场文书
学校团代会开幕词
2016/03/04 职场文书