python 基于opencv实现图像增强


Posted in Python onDecember 23, 2020

为了得到更加清晰的图像我们需要通过技术对图像进行处理,比如使用对比度增强的方法来处理图像,对比度增强就是对图像输出的灰度级放大到指定的程度,获得图像质量的提升。本文主要通过代码的方式,通过OpenCV的内置函数将图像处理到我们理想的结果。

灰度直方图

灰度直方图通过描述灰度级在图像矩阵中的像素个数来展示图像灰度级的信息,通过灰度直方图的统计我们可以看到每个灰度值的占有率。下面是一个灰度直方图的实现:

import cv2
import numpy as np
import sys
import matplotlib.pyplot as plt

#计算灰度直方图
def calcGrayHist(image):
  rows,clos = image.shape
  #创建一个矩阵用于存储灰度值
  grahHist = np.zeros([256],np.uint64)
  print('这是初始化矩阵')
  print(grahHist )
  for r in range(rows):
    for c in range(clos):
      #通过图像矩阵的遍历来将灰度值信息放入我们定义的矩阵中
      grahHist[image[r][c]] +=1
  print('这是赋值后的矩阵')
  print(grahHist)
  return grahHist
if __name__=="__main__":
  image = cv2.imread("../img/aa.jpg",cv2.IMREAD_GRAYSCALE)
  grahHist = calcGrayHist(image)
  x_range = range(256)
  plt.plot(x_range,grahHist,'-',linewidth= 3,c='k')
  #设置坐标轴的范围
  y_maxValue = np.max(grahHist)
  plt.axis([0,255,0,y_maxValue])
  #设置标签
  plt.xlabel('gray Level')
  plt.ylabel("number of pixels")
  #显示灰度直方图
  plt.show()

运行结果

python 基于opencv实现图像增强

python 基于opencv实现图像增强

线性变换

线性变换的公式为:

python 基于opencv实现图像增强

图像的线性变换无疑就是利用矩阵的乘法就行线性变换,比如一个矩阵I ,2I,3I (np.unt8 ndarry类型就是unt8类型)就是一个矩阵的变换.

import cv2
import numpy as np
import sys

if __name__=="__main__":
  img = cv2.imread("../img/ae.jpg",cv2.IMREAD_GRAYSCALE)
  a=2
  #线性变换 定义float类型
  O = float(a)*img
  #数据截取 如果大于255 取 255
  O[0>255] = 255
  #数据类型的转换
  O = np.round(O)
  O = O.astype(np.uint8)
  cv2.imshow("img",img)
  cv2.imshow('enhance',O)
  cv2.waitKey(0)
  cv2.destroyAllWindows()

运行结果:

python 基于opencv实现图像增强

灰度级范围越大就代表对比度越高,反之对比度越低视觉上清晰度就越低。我们通过a=2的线性对比度拉伸将灰度级范围扩大到[0,255]之间,如上图我们改变灰度级的范围后图像变的清晰。

直方图正规化

将图像O中的最小灰度级记为OminOmin,最大灰度级记为OmaxOmax,假如输出的图像P的灰度级范围为[Pmin,PmaxPmin,Pmax],则O 与 P的关系为:

python 基于opencv实现图像增强

其中P(r,c)就代表P的第r行第c列的灰度值。这个过程就是直方图的正规化。我们一般令P的范围是[0,255],所以直方图的正规化是在求a,b变换的值的方法,我们可以得到:

python 基于opencv实现图像增强

下面我们使用OpenCV来实现上面的理论:

import cv2
import numpy as np
import sys
from enhance.GrayHist import mget
if __name__=="__main__":
  img = cv2.imread("../img/o3.jpg",cv2.IMREAD_GRAYSCALE)
  #求出img 的最大最小值
  Maximg = np.max(img)
  Minimg = np.min(img)
  print(Maximg, Minimg, '-----------')
  #输出最小灰度级和最大灰度级
  Omin,Omax = 0,255
  #求 a, b
  a = float(Omax - Omin)/(Maximg - Minimg)
  b = Omin - a*Minimg
  print(a,b,'-----------')
  #线性变换
  O = a*img + b
  O = O.astype(np.uint8)
  #利用灰度直方图进行比较 mget为GrayHist中的写方法
  mget(img)
  mget(O)


  cv2.imshow('img',img)
  cv2.imshow('enhance',O)
  cv2.waitKey(0)
  cv2.destroyAllWindows()

python 基于opencv实现图像增强

python 基于opencv实现图像增强

伽玛变换

将一张图的灰度值归至[0,1]后,对于8位图来说,除以255即可。伽玛变换就是令O(r,c)=I(r,c)γI(r,c)γ,0≤r<H,0≤≤r<H,0≤c<W.
当γγ等于1时图像不发生变换,而当γγ大于0且小于1时就可以增强图像的对比度,相反的当γγ大于1时就可以使图像对比度降低。 以下是伽玛变换在OpenCV中的实现:

import cv2
import numpy as np
import sys

# 伽玛变换 power函数实现幂函数

if __name__ == "__main__":
  img = cv2.imread("../img/ae.jpg", cv2.IMREAD_GRAYSCALE)
  # 归1
  Cimg = img / 255
  # 伽玛变换
  gamma = 0.5
  O = np.power(Cimg,gamma)
  #效果
  cv2.imshow('img',img)
  cv2.imshow('O',O)
  cv2.waitKey(0)
  cv2.destroyAllWindows()

运行结果:

python 基于opencv实现图像增强

直方图的均衡化

  • 计算图像的灰度直方图
  • 计算灰度直方图的累加直方图
  • 根据累加的直方图和直方图均衡化的原理得到输入灰度级与输出灰度级之间的映射关系
  • 使用循环的方式得到输出图像的每一个像素的灰度级
import cv2
import numpy as np
from enhance.GrayHist import calcGrayHist

#直方图的均衡化
if __name__ == "__main__":
  image = cv2.imread("../img/ae.jpg", cv2.IMREAD_GRAYSCALE)
  rows,cols = image.shape
  #计算灰度直方图
  grayHist = calcGrayHist(image)
  #计算累加灰度直方图
  zeroCumuMoment = np.zeros([256], np.uint32)
  for p in range(256):
    if p == 0:
      zeroCumuMoment[p] = grayHist[0]
    else:
      zeroCumuMoment[p] = zeroCumuMoment[p-1] + grayHist[p]
  #根据累加的灰度直方图得到输入与输出灰度级之间的映射关系
  output = np.zeros([256],np.uint8)
  cofficient = 256.0/(rows*cols)
  for p in range(256):
    q = cofficient * float(zeroCumuMoment[p])-1
    if q >=0:
      output[p] = np.math.floor(q)
    else:
      output[p] = 0
  #得出均衡化图像
  equalHistimg = np.zeros(image.shape,np.uint8)
  for r in range(rows):
    for c in range(cols):
      equalHistimg[r][c] = output[image[r][c]]
  cv2.imshow('image',image)
  cv2.imshow('histimage',equalHistimg)
  cv2.waitKey(0)
  cv2.destroyAllWindows()

运行结果:

python 基于opencv实现图像增强

以上就是python 基于opencv实现图像增强的详细内容,更多关于python opencv的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python 读写文件和file对象的方法(推荐)
Sep 12 Python
Python 批量合并多个txt文件的实例讲解
May 08 Python
Python使用Selenium模块模拟浏览器抓取斗鱼直播间信息示例
Jul 18 Python
Python运行不显示DOS窗口的解决方法
Oct 22 Python
python实现抖音点赞功能
Apr 07 Python
pandas dataframe的合并实现(append, merge, concat)
Jun 24 Python
Python 旋转打印各种矩形的方法
Jul 09 Python
对python 树状嵌套结构的实现思路详解
Aug 09 Python
python_mask_array的用法
Feb 18 Python
实现ECharts双Y轴左右刻度线一致的例子
May 16 Python
python实现简单聊天功能
Jul 07 Python
Python使用psutil库对系统数据进行采集监控的方法
Aug 23 Python
python接口自动化框架实战
Dec 23 #Python
pycharm远程连接服务器并配置python interpreter的方法
Dec 23 #Python
python实现发送QQ邮件(可加附件)
Dec 23 #Python
如何通过安装HomeBrew来安装Python3
Dec 23 #Python
python实现定时发送邮件到指定邮箱
Dec 23 #Python
python实现定时发送邮件
Dec 23 #Python
python脚本定时发送邮件
Dec 22 #Python
You might like
海贼王动画变成“真人”后,凯多神还原,雷利太帅了!
2020/04/09 日漫
curl实现站外采集的方法和技巧
2014/01/31 PHP
PHP定时更新程序设计思路分享
2014/06/10 PHP
php json_encode与json_decode详解及实例
2016/12/13 PHP
PHP设计模式之原型模式定义与用法详解
2018/04/03 PHP
Laravel 集成微信用户登录和绑定的实现
2019/12/27 PHP
小议javascript 设计模式 推荐
2009/10/28 Javascript
javascript客户端解决方案 缓存提供程序
2010/07/14 Javascript
基于Jquery的将DropDownlist的选中值赋给label的实现代码
2011/05/06 Javascript
JS模板实现方法
2013/04/03 Javascript
浅析hasOwnProperty方法的应用
2013/11/20 Javascript
Javascript和Java获取各种form表单信息的简单实例
2014/02/14 Javascript
用jQuery实现的智能隐藏、滑动效果的返回顶部代码
2014/03/18 Javascript
JavaScript中使用ActiveXObject操作本地文件夹的方法
2014/03/28 Javascript
JavaScript生成.xls文件的代码
2016/12/22 Javascript
JS实现复制功能
2017/03/01 Javascript
js实现登录与注册界面
2017/11/01 Javascript
详解layui中的树形关于取值传值问题
2018/01/16 Javascript
开源一个微信小程序仪表盘组件过程解析
2019/07/30 Javascript
wx-charts 微信小程序图表插件的具体使用
2019/08/18 Javascript
element跨分页操作选择详解
2020/06/29 Javascript
[01:35:53]完美世界DOTA2联赛PWL S3 Magma vs GXR 第二场 12.13
2020/12/17 DOTA
python安装与使用redis的方法
2016/04/19 Python
node.js获取参数的常用方法(总结)
2017/05/29 Python
python字典DICT类型合并详解
2017/08/17 Python
python实现一个简单的ping工具方法
2019/01/31 Python
python占位符输入方式实例
2019/05/27 Python
django中SMTP发送邮件配置详解
2019/07/19 Python
django获取from表单multiple-select的value和id的方法
2019/07/19 Python
Python+Tensorflow+CNN实现车牌识别的示例代码
2019/10/11 Python
pytorch载入预训练模型后,实现训练指定层
2020/01/06 Python
北京一家公司的.net开发工程师笔试题
2012/04/17 面试题
儿科主治医生个人求职信
2013/09/23 职场文书
银行求职自荐书
2014/06/25 职场文书
八荣八耻演讲稿
2014/09/15 职场文书
使用Canvas绘制一个游戏人物属性图
2022/03/25 Javascript