keras实现基于孪生网络的图片相似度计算方式


Posted in Python onJune 11, 2020

我就废话不多说了,大家还是直接看代码吧!

import keras
from keras.layers import Input,Dense,Conv2D
from keras.layers import MaxPooling2D,Flatten,Convolution2D
from keras.models import Model
import os
import numpy as np
from PIL import Image
from keras.optimizers import SGD
from scipy import misc
root_path = os.getcwd()
train_names = ['bear','blackswan','bus','camel','car','cows','dance','dog','hike','hoc','kite','lucia','mallerd','pigs','soapbox','stro','surf','swing','train','walking']
test_names = ['boat','dance-jump','drift-turn','elephant','libby']
 
def load_data(seq_names,data_number,seq_len): 
#生成图片对
  print('loading data.....')
  frame_num = 51
  train_data1 = []
  train_data2 = []
  train_lab = []
  count = 0
  while count < data_number:
    count = count + 1
    pos_neg = np.random.randint(0,2)
    if pos_neg==0:
      seed1 = np.random.randint(0,seq_len)
      seed2 = np.random.randint(0,seq_len)
      while seed1 == seed2:
       seed1 = np.random.randint(0,seq_len)
       seed2 = np.random.randint(0,seq_len)
      frame1 = np.random.randint(1,frame_num)
      frame2 = np.random.randint(1,frame_num)
      path1 = os.path.join(root_path,'data','simility_data',seq_names[seed1],str(frame1)+'.jpg')
      path2 = os.path.join(root_path, 'data', 'simility_data', seq_names[seed2], str(frame2) + '.jpg')
      image1 = np.array(misc.imresize(Image.open(path1),[224,224]))
      image2 = np.array(misc.imresize(Image.open(path2),[224,224]))
      train_data1.append(image1)
      train_data2.append(image2)
      train_lab.append(np.array(0))
    else:
     seed = np.random.randint(0,seq_len)
     frame1 = np.random.randint(1, frame_num)
     frame2 = np.random.randint(1, frame_num)
     path1 = os.path.join(root_path, 'data', 'simility_data', seq_names[seed], str(frame1) + '.jpg')
     path2 = os.path.join(root_path, 'data', 'simility_data', seq_names[seed], str(frame2) + '.jpg')
     image1 = np.array(misc.imresize(Image.open(path1),[224,224]))
     image2 = np.array(misc.imresize(Image.open(path2),[224,224]))
     train_data1.append(image1)
     train_data2.append(image2)
     train_lab.append(np.array(1))
  return np.array(train_data1),np.array(train_data2),np.array(train_lab)
 
def vgg_16_base(input_tensor):
  net = Conv2D(64(3,3),activation='relu',padding='same',input_shape=(224,224,3))(input_tensor)
  net = Convolution2D(64,(3,3),activation='relu',padding='same')(net)
  net = MaxPooling2D((2,2),strides=(2,2))(net)
 
  net = Convolution2D(128,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(128,(3,3),activation='relu',padding='same')(net)
  net= MaxPooling2D((2,2),strides=(2,2))(net)
 
  net = Convolution2D(256,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(256,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(256,(3,3),activation='relu',padding='same')(net)
  net = MaxPooling2D((2,2),strides=(2,2))(net)
 
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = MaxPooling2D((2,2),strides=(2,2))(net)
 
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = MaxPooling2D((2,2),strides=(2,2))(net)
  net = Flatten()(net)
  return net
 
def siamese(vgg_path=None,siamese_path=None):
  input_tensor = Input(shape=(224,224,3))
  vgg_model = Model(input_tensor,vgg_16_base(input_tensor))
  if vgg_path:
    vgg_model.load_weights(vgg_path)
  input_im1 = Input(shape=(224,224,3))
  input_im2 = Input(shape=(224,224,3))
  out_im1 = vgg_model(input_im1)
  out_im2 = vgg_model(input_im2)
  diff = keras.layers.substract([out_im1,out_im2])
  out = Dense(500,activation='relu')(diff)
  out = Dense(1,activation='sigmoid')(out)
  model = Model([input_im1,input_im2],out)
  if siamese_path:
    model.load_weights(siamese_path)
  return model
 
train = True
if train:
  model = siamese(siamese_path='model/simility/vgg.h5')
  sgd = SGD(lr=1e-6,momentum=0.9,decay=1e-6,nesterov=True)
  model.compile(optimizer=sgd,loss='mse',metrics=['accuracy'])
  tensorboard = keras.callbacks.TensorBoard(histogram_freq=5,log_dir='log/simility',write_grads=True,write_images=True)
  ckpt = keras.callbacks.ModelCheckpoint(os.path.join(root_path,'model','simility','vgg.h5'),
                    verbose=1,period=5)
  train_data1,train_data2,train_lab = load_data(train_names,4000,20)
  model.fit([train_data1,train_data2],train_lab,callbacks=[tensorboard,ckpt],batch_size=64,epochs=50)
else:
  model = siamese(siamese_path='model/simility/vgg.h5')
  test_im1,test_im2,test_labe = load_data(test_names,1000,5)
  TP = 0
  for i in range(1000):
   im1 = np.expand_dims(test_im1[i],axis=0)
   im2 = np.expand_dims(test_im2[i],axis=0)
   lab = test_labe[i]
   pre = model.predict([im1,im2])
   if pre>0.9 and lab==1:
    TP = TP + 1
   if pre<0.9 and lab==0:
    TP = TP + 1
  print(float(TP)/1000)

输入两张图片,标记1为相似,0为不相似。

损失函数用的是简单的均方误差,有待改成Siamese的对比损失。

总结:

1.随机生成了几组1000对的图片,测试精度0.7左右,效果一般。

2.问题 1)数据加载没有用生成器,还得继续认真看看文档 2)训练时划分验证集的时候,训练就会报错,什么输入维度的问题,暂时没找到原因 3)输入的shape好像必须给出数字,本想用shape= input_tensor.get_shape(),能训练,不能保存模型,会报(NOT JSON Serializable,Dimension(None))类型错误

补充知识: keras 问答匹配孪生网络文本匹配 RNN 带有数据

用途:

这篇博客解释了如何搭建一个简单的匹配网络。并且使用了keras的lambda层。在建立网络之前需要对数据进行预处理。处理过后,文本转变为id字符序列。将一对question,answer分别编码可以得到两个向量,在匹配层中比较两个向量,计算相似度。

网络图示:

keras实现基于孪生网络的图片相似度计算方式

数据准备:

数据基于网上的淘宝客服对话数据,我也会放在我的下载页面中。原数据是对话,我筛选了其中label为1的对话。然后将对话拆解成QA对,q是用户,a是客服。然后对于每个q,有一个a是匹配的,label为1.再选择一个a,构成新的样本,label为0.

超参数:

比较简单,具体看代码就可以了。

# dialogue max pair q,a
max_pair = 30000
# top k frequent word ,k
MAX_FEATURES = 450
# fixed q,a length
MAX_SENTENCE_LENGTH = 30
embedding_size = 100
batch_size = 600
# learning rate
lr = 0.01
HIDDEN_LAYER_SIZE = n_hidden_units = 256 # neurons in hidden layer

细节:

导入一些库

# -*- coding: utf-8 -*-
from keras.layers.core import Activation, Dense, Dropout, SpatialDropout1D
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import LSTM
from keras.preprocessing import sequence
from sklearn.model_selection import train_test_split
import collections
import matplotlib.pyplot as plt
import nltk
import numpy as np
import os
import pandas as pd
from alime_data import convert_dialogue_to_pair
from parameter import MAX_SENTENCE_LENGTH,MAX_FEATURES,embedding_size,max_pair,batch_size,HIDDEN_LAYER_SIZE
DATA_DIR = "../data"
NUM_EPOCHS = 2
# Read training data and generate vocabulary
maxlen = 0
num_recs = 0

数据准备,先统计词频,然后取出top N个常用词,然后将句子转换成 单词id的序列。把句子中的有效id靠右边放,将句子左边补齐padding。然后分成训练集和测试集

word_freqs = collections.Counter()
training_data = convert_dialogue_to_pair(max_pair)
num_recs = len([1 for r in training_data.iterrows()])
 
#for line in ftrain:
for line in training_data.iterrows():
  label ,sentence_q = line[1]['label'],line[1]['sentence_q']
  label ,sentence_a = line[1]['label'],line[1]['sentence_a']
  words = nltk.word_tokenize(sentence_q.lower())#.decode("ascii", "ignore")
  if len(words) > maxlen:
    maxlen = len(words)
  for word in words:
    word_freqs[word] += 1
  words = nltk.word_tokenize(sentence_a.lower())#.decode("ascii", "ignore")
  if len(words) > maxlen:
    maxlen = len(words)
  for word in words:
    word_freqs[word] += 1
  #num_recs += 1
## Get some information about our corpus
 
# 1 is UNK, 0 is PAD
# We take MAX_FEATURES-1 featurs to accound for PAD
vocab_size = min(MAX_FEATURES, len(word_freqs)) + 2
word2index = {x[0]: i+2 for i, x in enumerate(word_freqs.most_common(MAX_FEATURES))}
word2index["PAD"] = 0
word2index["UNK"] = 1
index2word = {v:k for k, v in word2index.items()}
# convert sentences to sequences
X_q = np.empty((num_recs, ), dtype=list)
X_a = np.empty((num_recs, ), dtype=list)
y = np.zeros((num_recs, ))
i = 0
def chinese_split(x):
  return x.split(' ')
 
for line in training_data.iterrows():
  label ,sentence_q,sentence_a = line[1]['label'],line[1]['sentence_q'],line[1]['sentence_a']
  #label, sentence = line.strip().split("\t")
  #print(label,sentence)
  #words = nltk.word_tokenize(sentence_q.lower())
  words = chinese_split(sentence_q)
  seqs = []
  for word in words:
    if word in word2index.keys():
      seqs.append(word2index[word])
    else:
      seqs.append(word2index["UNK"])
  X_q[i] = seqs
  #print('add_q')
  #words = nltk.word_tokenize(sentence_a.lower())
  words = chinese_split(sentence_a)
  seqs = []
  for word in words:
    if word in word2index.keys():
      seqs.append(word2index[word])
    else:
      seqs.append(word2index["UNK"])
  X_a[i] = seqs
  y[i] = int(label)
  i += 1
# Pad the sequences (left padded with zeros)
X_a = sequence.pad_sequences(X_a, maxlen=MAX_SENTENCE_LENGTH)
X_q = sequence.pad_sequences(X_q, maxlen=MAX_SENTENCE_LENGTH)
X = []
for i in range(len(X_a)):
  concat = [X_q[i],X_a[i]]
  X.append(concat)
 
# Split input into training and test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2,
                        random_state=42)
#print(Xtrain.shape, Xtest.shape, ytrain.shape, ytest.shape)
Xtrain_Q = [e[0] for e in Xtrain]
Xtrain_A = [e[1] for e in Xtrain]
Xtest_Q = [e[0] for e in Xtest]
Xtest_A = [e[1] for e in Xtest]

最后建立网络。先定义两个函数,一个是句子编码器,另一个是lambda层,计算两个向量的绝对差。将QA分别用encoder处理得到两个向量,把两个向量放入lambda层。最后有了2*hidden size的一层,将这一层接一个dense层,接activation,得到分类概率。

from keras.layers.wrappers import Bidirectional
from keras.layers import Input,Lambda
from keras.models import Model
 
def encoder(inputs_seqs,rnn_hidden_size,dropout_rate):
  x_embed = Embedding(vocab_size, embedding_size, input_length=MAX_SENTENCE_LENGTH)(inputs_seqs)
  inputs_drop = SpatialDropout1D(0.2)(x_embed)
  encoded_Q = Bidirectional(
    LSTM(rnn_hidden_size, dropout=dropout_rate, recurrent_dropout=dropout_rate, name='RNN'))(inputs_drop)
  return encoded_Q
 
def absolute_difference(vecs):
  a,b =vecs
  #d = a-b
  return abs(a - b)
 
inputs_Q = Input(shape=(MAX_SENTENCE_LENGTH,), name="input")
# x_embed = Embedding(vocab_size, embedding_size, input_length=MAX_SENTENCE_LENGTH)(inputs_Q)
# inputs_drop = SpatialDropout1D(0.2)(x_embed)
# encoded_Q = Bidirectional(LSTM(HIDDEN_LAYER_SIZE, dropout=0.2, recurrent_dropout=0.2,name= 'RNN'))(inputs_drop)
inputs_A = Input(shape=(MAX_SENTENCE_LENGTH,), name="input_a")
# x_embed = Embedding(vocab_size, embedding_size, input_length=MAX_SENTENCE_LENGTH)(inputs_A)
# inputs_drop = SpatialDropout1D(0.2)(x_embed)
# encoded_A = Bidirectional(LSTM(HIDDEN_LAYER_SIZE, dropout=0.2, recurrent_dropout=0.2,name= 'RNN'))(inputs_drop)
encoded_Q = encoder(inputs_Q,HIDDEN_LAYER_SIZE,0.1)
encoded_A = encoder(inputs_A,HIDDEN_LAYER_SIZE,0.1)
 
# import tensorflow as tf
# difference = tf.subtract(encoded_Q, encoded_A)
# difference = tf.abs(difference)
similarity = Lambda(absolute_difference)([encoded_Q, encoded_A])
# x = concatenate([encoded_Q, encoded_A])
#
# matching_x = Dense(128)(x)
# matching_x = Activation("sigmoid")(matching_x)
polar = Dense(1)(similarity)
prop = Activation("sigmoid")(polar)
model = Model(inputs=[inputs_Q,inputs_A], outputs=prop)
model.compile(loss="binary_crossentropy", optimizer="adam",
       metrics=["accuracy"])
training_history = model.fit([Xtrain_Q, Xtrain_A], ytrain, batch_size=batch_size,
               epochs=NUM_EPOCHS,
               validation_data=([Xtest_Q,Xtest_A], ytest))
# plot loss and accuracy
def plot(training_history):
  plt.subplot(211)
  plt.title("Accuracy")
  plt.plot(training_history.history["acc"], color="g", label="Train")
  plt.plot(training_history.history["val_acc"], color="b", label="Validation")
  plt.legend(loc="best")
 
  plt.subplot(212)
  plt.title("Loss")
  plt.plot(training_history.history["loss"], color="g", label="Train")
  plt.plot(training_history.history["val_loss"], color="b", label="Validation")
  plt.legend(loc="best")
  plt.tight_layout()
  plt.show()
 
# evaluate
score, acc = model.evaluate([Xtest_Q,Xtest_A], ytest, batch_size = batch_size)
print("Test score: %.3f, accuracy: %.3f" % (score, acc))
 
for i in range(25):
  idx = np.random.randint(len(Xtest_Q))
  #idx2 = np.random.randint(len(Xtest_A))
  xtest_Q = Xtest_Q[idx].reshape(1,MAX_SENTENCE_LENGTH)
  xtest_A = Xtest_A[idx].reshape(1,MAX_SENTENCE_LENGTH)
  ylabel = ytest[idx]
  ypred = model.predict([xtest_Q,xtest_A])[0][0]
  sent_Q = " ".join([index2word[x] for x in xtest_Q[0].tolist() if x != 0])
  sent_A = " ".join([index2word[x] for x in xtest_A[0].tolist() if x != 0])
  print("%.0f\t%d\t%s\t%s" % (ypred, ylabel, sent_Q,sent_A))

最后是处理数据的函数,写在另一个文件里。

import nltk
from parameter import MAX_FEATURES,MAX_SENTENCE_LENGTH
import pandas as pd
from collections import Counter
def get_pair(number, dialogue):
  pairs = []
  for conversation in dialogue:
    utterances = conversation[2:].strip('\n').split('\t')
    # print(utterances)
    # break
 
    for i, utterance in enumerate(utterances):
      if i % 2 != 0: continue
      pairs.append([utterances[i], utterances[i + 1]])
      if len(pairs) >= number:
        return pairs
  return pairs
 
 
def convert_dialogue_to_pair(k):
  dialogue = open('dialogue_alibaba2.txt', encoding='utf-8', mode='r')
  dialogue = dialogue.readlines()
  dialogue = [p for p in dialogue if p.startswith('1')]
  print(len(dialogue))
  pairs = get_pair(k, dialogue)
  # break
  # print(pairs)
  data = []
  for p in pairs:
    data.append([p[0], p[1], 1])
  for i, p in enumerate(pairs):
    data.append([p[0], pairs[(i + 8) % len(pairs)][1], 0])
  df = pd.DataFrame(data, columns=['sentence_q', 'sentence_a', 'label'])
 
  print(len(data))
  return df

以上这篇keras实现基于孪生网络的图片相似度计算方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python变量不能以数字打头详解
Jul 06 Python
Flask框架各种常见装饰器示例
Jul 17 Python
python 处理telnet返回的More,以及get想要的那个参数方法
Feb 14 Python
Python开发网站目录扫描器的实现
Feb 21 Python
详解Matplotlib绘图之属性设置
Aug 23 Python
简单了解Python3 bytes和str类型的区别和联系
Dec 19 Python
详解Python 函数参数的拆解
Sep 02 Python
利用Python过滤相似文本的简单方法示例
Feb 03 Python
Python爬虫制作翻译程序的示例代码
Feb 22 Python
python 如何在list中找Topk的数值和索引
May 20 Python
Python中 range | np.arange | np.linspace三者的区别
Mar 22 Python
Python中npy和mat文件的保存与读取
Apr 24 Python
为什么说python适合写爬虫
Jun 11 #Python
python新手学习使用库
Jun 11 #Python
keras实现多种分类网络的方式
Jun 11 #Python
python的help函数如何使用
Jun 11 #Python
新手学python应该下哪个版本
Jun 11 #Python
python开发前景如何
Jun 11 #Python
python编写softmax函数、交叉熵函数实例
Jun 11 #Python
You might like
PHP封装的一个支持HTML、JS、PHP重定向的多功能跳转函数
2014/06/19 PHP
学习thinkphp5.0验证类使用方法
2017/11/16 PHP
小程序微信支付功能配置方法示例详解【基于thinkPHP】
2019/05/05 PHP
一份老外写的XMLHttpRequest代码多浏览器支持兼容性
2007/01/11 Javascript
Add Formatted Text to a Word Document
2007/06/15 Javascript
JavaScript中的Location地址对象
2008/01/16 Javascript
js 图片缩放(按比例)控制代码
2009/05/27 Javascript
document.getElementById的简写方式(获取id对象的简略写法)
2010/09/10 Javascript
JQUBAR1.1 jQuery 柱状图插件发布
2010/11/28 Javascript
jQuery EasyUI API 中文文档 - Tabs标签页/选项卡
2011/10/01 Javascript
JavaScript中for-in遍历方式示例介绍
2014/02/11 Javascript
Js实现滚动变色的文字效果
2014/06/16 Javascript
JS实现关键字搜索时的相关下拉字段效果
2014/08/05 Javascript
jQuery中next方法用法实例
2015/04/24 Javascript
Vue.js使用v-show和v-if的注意事项
2016/12/13 Javascript
微信小程序 表单Form实例详解(附源码)
2016/12/22 Javascript
JavaScript 网页中实现一个计算当年还剩多少时间的倒数计时程序
2017/01/25 Javascript
js实现做通讯录的索引滑动显示效果和滑动显示锚点效果
2017/02/18 Javascript
Python中使用urllib2防止302跳转的代码例子
2014/07/07 Python
python修改注册表终止360进程实例
2014/10/13 Python
Python如何快速上手? 快速掌握一门新语言的方法
2017/11/14 Python
从头学Python之编写可执行的.py文件
2017/11/28 Python
Django压缩静态文件的实现方法详析
2018/08/26 Python
python批量下载网站马拉松照片的完整步骤
2018/12/05 Python
Python捕获异常堆栈信息的几种方法(小结)
2020/05/18 Python
使用CSS3和Checkbox实现JQuery的一些效果
2015/08/03 HTML / CSS
ONLY德国官方在线商店:购买时尚女装
2017/09/21 全球购物
德国亚马逊官方网站:Amazon.de
2020/11/15 全球购物
公司中秋节活动方案
2014/02/12 职场文书
作风建设演讲稿
2014/05/23 职场文书
不服从上级领导安排的检讨书
2014/09/14 职场文书
小学生交通安全寄语
2015/02/27 职场文书
红色故事汇观后感
2015/06/18 职场文书
2015年度环卫处工作总结
2015/07/24 职场文书
Centos系统通过Docker安装并搭建MongoDB数据库
2022/04/12 MongoDB
Python函数对象与闭包函数
2022/04/13 Python