keras实现基于孪生网络的图片相似度计算方式


Posted in Python onJune 11, 2020

我就废话不多说了,大家还是直接看代码吧!

import keras
from keras.layers import Input,Dense,Conv2D
from keras.layers import MaxPooling2D,Flatten,Convolution2D
from keras.models import Model
import os
import numpy as np
from PIL import Image
from keras.optimizers import SGD
from scipy import misc
root_path = os.getcwd()
train_names = ['bear','blackswan','bus','camel','car','cows','dance','dog','hike','hoc','kite','lucia','mallerd','pigs','soapbox','stro','surf','swing','train','walking']
test_names = ['boat','dance-jump','drift-turn','elephant','libby']
 
def load_data(seq_names,data_number,seq_len): 
#生成图片对
  print('loading data.....')
  frame_num = 51
  train_data1 = []
  train_data2 = []
  train_lab = []
  count = 0
  while count < data_number:
    count = count + 1
    pos_neg = np.random.randint(0,2)
    if pos_neg==0:
      seed1 = np.random.randint(0,seq_len)
      seed2 = np.random.randint(0,seq_len)
      while seed1 == seed2:
       seed1 = np.random.randint(0,seq_len)
       seed2 = np.random.randint(0,seq_len)
      frame1 = np.random.randint(1,frame_num)
      frame2 = np.random.randint(1,frame_num)
      path1 = os.path.join(root_path,'data','simility_data',seq_names[seed1],str(frame1)+'.jpg')
      path2 = os.path.join(root_path, 'data', 'simility_data', seq_names[seed2], str(frame2) + '.jpg')
      image1 = np.array(misc.imresize(Image.open(path1),[224,224]))
      image2 = np.array(misc.imresize(Image.open(path2),[224,224]))
      train_data1.append(image1)
      train_data2.append(image2)
      train_lab.append(np.array(0))
    else:
     seed = np.random.randint(0,seq_len)
     frame1 = np.random.randint(1, frame_num)
     frame2 = np.random.randint(1, frame_num)
     path1 = os.path.join(root_path, 'data', 'simility_data', seq_names[seed], str(frame1) + '.jpg')
     path2 = os.path.join(root_path, 'data', 'simility_data', seq_names[seed], str(frame2) + '.jpg')
     image1 = np.array(misc.imresize(Image.open(path1),[224,224]))
     image2 = np.array(misc.imresize(Image.open(path2),[224,224]))
     train_data1.append(image1)
     train_data2.append(image2)
     train_lab.append(np.array(1))
  return np.array(train_data1),np.array(train_data2),np.array(train_lab)
 
def vgg_16_base(input_tensor):
  net = Conv2D(64(3,3),activation='relu',padding='same',input_shape=(224,224,3))(input_tensor)
  net = Convolution2D(64,(3,3),activation='relu',padding='same')(net)
  net = MaxPooling2D((2,2),strides=(2,2))(net)
 
  net = Convolution2D(128,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(128,(3,3),activation='relu',padding='same')(net)
  net= MaxPooling2D((2,2),strides=(2,2))(net)
 
  net = Convolution2D(256,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(256,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(256,(3,3),activation='relu',padding='same')(net)
  net = MaxPooling2D((2,2),strides=(2,2))(net)
 
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = MaxPooling2D((2,2),strides=(2,2))(net)
 
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
  net = MaxPooling2D((2,2),strides=(2,2))(net)
  net = Flatten()(net)
  return net
 
def siamese(vgg_path=None,siamese_path=None):
  input_tensor = Input(shape=(224,224,3))
  vgg_model = Model(input_tensor,vgg_16_base(input_tensor))
  if vgg_path:
    vgg_model.load_weights(vgg_path)
  input_im1 = Input(shape=(224,224,3))
  input_im2 = Input(shape=(224,224,3))
  out_im1 = vgg_model(input_im1)
  out_im2 = vgg_model(input_im2)
  diff = keras.layers.substract([out_im1,out_im2])
  out = Dense(500,activation='relu')(diff)
  out = Dense(1,activation='sigmoid')(out)
  model = Model([input_im1,input_im2],out)
  if siamese_path:
    model.load_weights(siamese_path)
  return model
 
train = True
if train:
  model = siamese(siamese_path='model/simility/vgg.h5')
  sgd = SGD(lr=1e-6,momentum=0.9,decay=1e-6,nesterov=True)
  model.compile(optimizer=sgd,loss='mse',metrics=['accuracy'])
  tensorboard = keras.callbacks.TensorBoard(histogram_freq=5,log_dir='log/simility',write_grads=True,write_images=True)
  ckpt = keras.callbacks.ModelCheckpoint(os.path.join(root_path,'model','simility','vgg.h5'),
                    verbose=1,period=5)
  train_data1,train_data2,train_lab = load_data(train_names,4000,20)
  model.fit([train_data1,train_data2],train_lab,callbacks=[tensorboard,ckpt],batch_size=64,epochs=50)
else:
  model = siamese(siamese_path='model/simility/vgg.h5')
  test_im1,test_im2,test_labe = load_data(test_names,1000,5)
  TP = 0
  for i in range(1000):
   im1 = np.expand_dims(test_im1[i],axis=0)
   im2 = np.expand_dims(test_im2[i],axis=0)
   lab = test_labe[i]
   pre = model.predict([im1,im2])
   if pre>0.9 and lab==1:
    TP = TP + 1
   if pre<0.9 and lab==0:
    TP = TP + 1
  print(float(TP)/1000)

输入两张图片,标记1为相似,0为不相似。

损失函数用的是简单的均方误差,有待改成Siamese的对比损失。

总结:

1.随机生成了几组1000对的图片,测试精度0.7左右,效果一般。

2.问题 1)数据加载没有用生成器,还得继续认真看看文档 2)训练时划分验证集的时候,训练就会报错,什么输入维度的问题,暂时没找到原因 3)输入的shape好像必须给出数字,本想用shape= input_tensor.get_shape(),能训练,不能保存模型,会报(NOT JSON Serializable,Dimension(None))类型错误

补充知识: keras 问答匹配孪生网络文本匹配 RNN 带有数据

用途:

这篇博客解释了如何搭建一个简单的匹配网络。并且使用了keras的lambda层。在建立网络之前需要对数据进行预处理。处理过后,文本转变为id字符序列。将一对question,answer分别编码可以得到两个向量,在匹配层中比较两个向量,计算相似度。

网络图示:

keras实现基于孪生网络的图片相似度计算方式

数据准备:

数据基于网上的淘宝客服对话数据,我也会放在我的下载页面中。原数据是对话,我筛选了其中label为1的对话。然后将对话拆解成QA对,q是用户,a是客服。然后对于每个q,有一个a是匹配的,label为1.再选择一个a,构成新的样本,label为0.

超参数:

比较简单,具体看代码就可以了。

# dialogue max pair q,a
max_pair = 30000
# top k frequent word ,k
MAX_FEATURES = 450
# fixed q,a length
MAX_SENTENCE_LENGTH = 30
embedding_size = 100
batch_size = 600
# learning rate
lr = 0.01
HIDDEN_LAYER_SIZE = n_hidden_units = 256 # neurons in hidden layer

细节:

导入一些库

# -*- coding: utf-8 -*-
from keras.layers.core import Activation, Dense, Dropout, SpatialDropout1D
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import LSTM
from keras.preprocessing import sequence
from sklearn.model_selection import train_test_split
import collections
import matplotlib.pyplot as plt
import nltk
import numpy as np
import os
import pandas as pd
from alime_data import convert_dialogue_to_pair
from parameter import MAX_SENTENCE_LENGTH,MAX_FEATURES,embedding_size,max_pair,batch_size,HIDDEN_LAYER_SIZE
DATA_DIR = "../data"
NUM_EPOCHS = 2
# Read training data and generate vocabulary
maxlen = 0
num_recs = 0

数据准备,先统计词频,然后取出top N个常用词,然后将句子转换成 单词id的序列。把句子中的有效id靠右边放,将句子左边补齐padding。然后分成训练集和测试集

word_freqs = collections.Counter()
training_data = convert_dialogue_to_pair(max_pair)
num_recs = len([1 for r in training_data.iterrows()])
 
#for line in ftrain:
for line in training_data.iterrows():
  label ,sentence_q = line[1]['label'],line[1]['sentence_q']
  label ,sentence_a = line[1]['label'],line[1]['sentence_a']
  words = nltk.word_tokenize(sentence_q.lower())#.decode("ascii", "ignore")
  if len(words) > maxlen:
    maxlen = len(words)
  for word in words:
    word_freqs[word] += 1
  words = nltk.word_tokenize(sentence_a.lower())#.decode("ascii", "ignore")
  if len(words) > maxlen:
    maxlen = len(words)
  for word in words:
    word_freqs[word] += 1
  #num_recs += 1
## Get some information about our corpus
 
# 1 is UNK, 0 is PAD
# We take MAX_FEATURES-1 featurs to accound for PAD
vocab_size = min(MAX_FEATURES, len(word_freqs)) + 2
word2index = {x[0]: i+2 for i, x in enumerate(word_freqs.most_common(MAX_FEATURES))}
word2index["PAD"] = 0
word2index["UNK"] = 1
index2word = {v:k for k, v in word2index.items()}
# convert sentences to sequences
X_q = np.empty((num_recs, ), dtype=list)
X_a = np.empty((num_recs, ), dtype=list)
y = np.zeros((num_recs, ))
i = 0
def chinese_split(x):
  return x.split(' ')
 
for line in training_data.iterrows():
  label ,sentence_q,sentence_a = line[1]['label'],line[1]['sentence_q'],line[1]['sentence_a']
  #label, sentence = line.strip().split("\t")
  #print(label,sentence)
  #words = nltk.word_tokenize(sentence_q.lower())
  words = chinese_split(sentence_q)
  seqs = []
  for word in words:
    if word in word2index.keys():
      seqs.append(word2index[word])
    else:
      seqs.append(word2index["UNK"])
  X_q[i] = seqs
  #print('add_q')
  #words = nltk.word_tokenize(sentence_a.lower())
  words = chinese_split(sentence_a)
  seqs = []
  for word in words:
    if word in word2index.keys():
      seqs.append(word2index[word])
    else:
      seqs.append(word2index["UNK"])
  X_a[i] = seqs
  y[i] = int(label)
  i += 1
# Pad the sequences (left padded with zeros)
X_a = sequence.pad_sequences(X_a, maxlen=MAX_SENTENCE_LENGTH)
X_q = sequence.pad_sequences(X_q, maxlen=MAX_SENTENCE_LENGTH)
X = []
for i in range(len(X_a)):
  concat = [X_q[i],X_a[i]]
  X.append(concat)
 
# Split input into training and test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2,
                        random_state=42)
#print(Xtrain.shape, Xtest.shape, ytrain.shape, ytest.shape)
Xtrain_Q = [e[0] for e in Xtrain]
Xtrain_A = [e[1] for e in Xtrain]
Xtest_Q = [e[0] for e in Xtest]
Xtest_A = [e[1] for e in Xtest]

最后建立网络。先定义两个函数,一个是句子编码器,另一个是lambda层,计算两个向量的绝对差。将QA分别用encoder处理得到两个向量,把两个向量放入lambda层。最后有了2*hidden size的一层,将这一层接一个dense层,接activation,得到分类概率。

from keras.layers.wrappers import Bidirectional
from keras.layers import Input,Lambda
from keras.models import Model
 
def encoder(inputs_seqs,rnn_hidden_size,dropout_rate):
  x_embed = Embedding(vocab_size, embedding_size, input_length=MAX_SENTENCE_LENGTH)(inputs_seqs)
  inputs_drop = SpatialDropout1D(0.2)(x_embed)
  encoded_Q = Bidirectional(
    LSTM(rnn_hidden_size, dropout=dropout_rate, recurrent_dropout=dropout_rate, name='RNN'))(inputs_drop)
  return encoded_Q
 
def absolute_difference(vecs):
  a,b =vecs
  #d = a-b
  return abs(a - b)
 
inputs_Q = Input(shape=(MAX_SENTENCE_LENGTH,), name="input")
# x_embed = Embedding(vocab_size, embedding_size, input_length=MAX_SENTENCE_LENGTH)(inputs_Q)
# inputs_drop = SpatialDropout1D(0.2)(x_embed)
# encoded_Q = Bidirectional(LSTM(HIDDEN_LAYER_SIZE, dropout=0.2, recurrent_dropout=0.2,name= 'RNN'))(inputs_drop)
inputs_A = Input(shape=(MAX_SENTENCE_LENGTH,), name="input_a")
# x_embed = Embedding(vocab_size, embedding_size, input_length=MAX_SENTENCE_LENGTH)(inputs_A)
# inputs_drop = SpatialDropout1D(0.2)(x_embed)
# encoded_A = Bidirectional(LSTM(HIDDEN_LAYER_SIZE, dropout=0.2, recurrent_dropout=0.2,name= 'RNN'))(inputs_drop)
encoded_Q = encoder(inputs_Q,HIDDEN_LAYER_SIZE,0.1)
encoded_A = encoder(inputs_A,HIDDEN_LAYER_SIZE,0.1)
 
# import tensorflow as tf
# difference = tf.subtract(encoded_Q, encoded_A)
# difference = tf.abs(difference)
similarity = Lambda(absolute_difference)([encoded_Q, encoded_A])
# x = concatenate([encoded_Q, encoded_A])
#
# matching_x = Dense(128)(x)
# matching_x = Activation("sigmoid")(matching_x)
polar = Dense(1)(similarity)
prop = Activation("sigmoid")(polar)
model = Model(inputs=[inputs_Q,inputs_A], outputs=prop)
model.compile(loss="binary_crossentropy", optimizer="adam",
       metrics=["accuracy"])
training_history = model.fit([Xtrain_Q, Xtrain_A], ytrain, batch_size=batch_size,
               epochs=NUM_EPOCHS,
               validation_data=([Xtest_Q,Xtest_A], ytest))
# plot loss and accuracy
def plot(training_history):
  plt.subplot(211)
  plt.title("Accuracy")
  plt.plot(training_history.history["acc"], color="g", label="Train")
  plt.plot(training_history.history["val_acc"], color="b", label="Validation")
  plt.legend(loc="best")
 
  plt.subplot(212)
  plt.title("Loss")
  plt.plot(training_history.history["loss"], color="g", label="Train")
  plt.plot(training_history.history["val_loss"], color="b", label="Validation")
  plt.legend(loc="best")
  plt.tight_layout()
  plt.show()
 
# evaluate
score, acc = model.evaluate([Xtest_Q,Xtest_A], ytest, batch_size = batch_size)
print("Test score: %.3f, accuracy: %.3f" % (score, acc))
 
for i in range(25):
  idx = np.random.randint(len(Xtest_Q))
  #idx2 = np.random.randint(len(Xtest_A))
  xtest_Q = Xtest_Q[idx].reshape(1,MAX_SENTENCE_LENGTH)
  xtest_A = Xtest_A[idx].reshape(1,MAX_SENTENCE_LENGTH)
  ylabel = ytest[idx]
  ypred = model.predict([xtest_Q,xtest_A])[0][0]
  sent_Q = " ".join([index2word[x] for x in xtest_Q[0].tolist() if x != 0])
  sent_A = " ".join([index2word[x] for x in xtest_A[0].tolist() if x != 0])
  print("%.0f\t%d\t%s\t%s" % (ypred, ylabel, sent_Q,sent_A))

最后是处理数据的函数,写在另一个文件里。

import nltk
from parameter import MAX_FEATURES,MAX_SENTENCE_LENGTH
import pandas as pd
from collections import Counter
def get_pair(number, dialogue):
  pairs = []
  for conversation in dialogue:
    utterances = conversation[2:].strip('\n').split('\t')
    # print(utterances)
    # break
 
    for i, utterance in enumerate(utterances):
      if i % 2 != 0: continue
      pairs.append([utterances[i], utterances[i + 1]])
      if len(pairs) >= number:
        return pairs
  return pairs
 
 
def convert_dialogue_to_pair(k):
  dialogue = open('dialogue_alibaba2.txt', encoding='utf-8', mode='r')
  dialogue = dialogue.readlines()
  dialogue = [p for p in dialogue if p.startswith('1')]
  print(len(dialogue))
  pairs = get_pair(k, dialogue)
  # break
  # print(pairs)
  data = []
  for p in pairs:
    data.append([p[0], p[1], 1])
  for i, p in enumerate(pairs):
    data.append([p[0], pairs[(i + 8) % len(pairs)][1], 0])
  df = pd.DataFrame(data, columns=['sentence_q', 'sentence_a', 'label'])
 
  print(len(data))
  return df

以上这篇keras实现基于孪生网络的图片相似度计算方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用7z解压软件备份文件脚本分享
Feb 21 Python
简单的Python2.7编程初学经验总结
Apr 01 Python
玩转python爬虫之爬取糗事百科段子
Feb 17 Python
Python学习pygal绘制线图代码分享
Dec 09 Python
Python实现替换文件中指定内容的方法
Mar 19 Python
用scikit-learn和pandas学习线性回归的方法
Jun 21 Python
深入了解Django View(视图系统)
Jul 23 Python
Python Pandas 对列/行进行选择,增加,删除操作
May 17 Python
keras打印loss对权重的导数方式
Jun 10 Python
python利用os模块编写文件复制功能——copy()函数用法
Jul 13 Python
python如何调用百度识图api
Sep 29 Python
python中%格式表达式实例用法
Jun 18 Python
为什么说python适合写爬虫
Jun 11 #Python
python新手学习使用库
Jun 11 #Python
keras实现多种分类网络的方式
Jun 11 #Python
python的help函数如何使用
Jun 11 #Python
新手学python应该下哪个版本
Jun 11 #Python
python开发前景如何
Jun 11 #Python
python编写softmax函数、交叉熵函数实例
Jun 11 #Python
You might like
php中检查文件或目录是否存在的代码小结
2012/10/22 PHP
php基于openssl的rsa加密解密示例
2016/07/11 PHP
PHP 7.4 新语法之箭头函数实例详解
2019/05/09 PHP
JQuery操作三大控件(下拉,单选,复选)的方法
2013/08/06 Javascript
jquery中prop()方法和attr()方法的区别浅析
2013/09/06 Javascript
JS获取农历日期具体实例
2013/11/14 Javascript
Jquery插件编写简明教程
2014/03/25 Javascript
浅谈Javascript数组的使用
2015/07/29 Javascript
jquery实现简单实用的弹出层效果代码
2015/10/15 Javascript
jQuery点击按钮弹出遮罩层且内容居中特效
2015/12/14 Javascript
基于Bootstrap的Metronic框架实现页面链接收藏夹功能
2016/08/29 Javascript
微信小程序 wx.request(OBJECT)发起请求详解
2016/10/13 Javascript
关于微信上网页图片点击全屏放大效果
2016/12/19 Javascript
原生js实现打字动画游戏
2017/02/04 Javascript
js仿360开机效果
2019/12/26 Javascript
vue学习笔记之过滤器的基本使用方法实例分析
2020/02/01 Javascript
[01:11:21]DOTA2-DPC中国联赛 正赛 VG vs Elephant BO3 第一场 3月6日
2021/03/11 DOTA
用Python登录Gmail并发送Gmail邮件的教程
2015/04/17 Python
Python实现批量检测HTTP服务的状态
2016/10/27 Python
利用Python实现颜色色值转换的小工具
2016/10/27 Python
Python实现微信小程序支付功能
2019/07/25 Python
python线程安全及多进程多线程实现方法详解
2019/09/27 Python
Python多线程多进程实例对比解析
2020/03/12 Python
scrapy与selenium结合爬取数据(爬取动态网站)的示例代码
2020/09/28 Python
Python操作word文档插入图片和表格的实例演示
2020/10/25 Python
selenium携带cookies模拟登陆CSDN的实现
2021/01/19 Python
澳大利高级泳装品牌:Bondi Born
2018/05/23 全球购物
自荐信怎么写好
2013/11/11 职场文书
挂职思想汇报
2013/12/31 职场文书
办公室秘书岗位职责范本
2014/02/11 职场文书
个人社会实践自我鉴定
2014/03/24 职场文书
交通事故委托书范本
2014/09/28 职场文书
2015年度护士个人工作总结
2015/04/09 职场文书
叶问观后感
2015/06/15 职场文书
给校长的建议书作文500字
2015/09/14 职场文书
react使用antd的上传组件实现文件表单一起提交功能(完整代码)
2021/06/29 Javascript