Python计算不规则图形面积算法实现解析


Posted in Python onNovember 22, 2019

这篇文章主要介绍了Python计算不规则图形面积算法实现解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

介绍:大三上做一个医学影像识别的项目,医生在原图上用红笔标记病灶点,通过记录红色的坐标位置可以得到病灶点的外接矩形,但是后续会涉及到红圈内的面积在外接矩形下的占比问题,有些外接矩形内有多个红色标记,在使用网上的opencv的fillPoly填充效果非常不理想,还有类似python计算任意多边形方法也不理想的情况下,自己探索出的一种效果还不错的计算多圈及不规则图形的面积的算法。

能较为准确的计算出不规则图形的面积

正文:算法的思想很简单,遍历图片每一列,通过色差判断是否遇到标记圈,将坐标全部记录,对每一列的坐标都进行最小行和最大行记录,确定每一列的最小和最大的坐标,然后上色(类似opencv的fillPoly的实现,但是细节有些区别),只是这样效果并不好,将图片旋转90度,再做一边,将两个图片的结果放在一起做与操作,得到结果就能很好的处理多圈的标记问题和多算面积的问题(比如上面的08-LM),

Python计算不规则图形面积算法实现解析

算法实现

全程只用pillow库

首先先用屏幕拾色器获取目标颜色的rgb值,我这种情况下就是(237,28,36),前期截取外接矩形也是要这一步的,颜色也一致

def pixel_wanted(pix):
   return pix==(237,28, 36)

每一列都设定翻转位初始为False,如果上一个像素点不是目标色,当前是目标色则开始记录,一旦不是目标色,停止检测

top_Pixel都设定为黑色(0,0,0)因为有图片最上方就是目标色,导致判定出问题,直接让最上面的像素初始化是黑色

coordinate_List记录了所有符合的点坐标

coordinate_List = []
top_Pixel = (0,0,0)
for x in range(im.size[0]):
  flag = False #初始化每一列翻转位为False
  for y in range(im.size[1]):
    current_pixel = im.getpixel((x,y))
    last_pixel = im.getpixel((x,y-1)) if y>0 else top_Pixel
    #翻转判定
    if pixel_wanted(current_pixel) and \
        not pixel_wanted(last_pixel):
      flag = True
    if flag and not pixel_wanted(current_pixel):
      flag = False
    if(flag):
      coordinate_List.append((x,y))

coordinate_List中的点如下图

Python计算不规则图形面积算法实现解析

然后就是将上面获得coordinate列表进行处理

将coordinate列表中每一列的最小坐标和最大坐标进行记录

因为每一列记录的数量并不确定(应该可以在上一步改进一下),所以需要遍历多次

首先找到第一个列出现的坐标,将它的行信息记录(行信息最小确定),

然后遍历出全部的同列的坐标,比较行坐标,如果大的就将最大的代替(行信息最大确定),用一个新的列表记录数据

coordinate_Min_Max_List = []
#找最小最大
for i in range(im.size[0]):
  min=-1
  max=-1
  for coordinate in coordinate_List:
    if coordinate[0] == i:
      min = coordinate[1]
      max = coordinate[1]
      break
  for coordinate in coordinate_List:
    if coordinate[0] == i:
      if coordinate[1]>max:
        max = coordinate[1]
  coordinate_Min_Max_List.append(min)
  coordinate_Min_Max_List.append(max)

其中要将min和max都初始化为一个坐标不存在的值比如-1,为了在下一步多圈且有空隙情况下,不会出现残影现象,如下图

Python计算不规则图形面积算法实现解析Python计算不规则图形面积算法实现解析

上一步的最后得到一个列表,第n列的最小行和最大行分别是第2n和2n+1元素,结果中的-1,为了让下一步不会画进去

Python计算不规则图形面积算法实现解析

然后就是绘制图片了,每一列将列表中对应的最小行到最大行涂满

#上色
for x in range(im.size[0]):
  for y in range(im.size[1]):
    min = coordinate_Min_Max_List[x*2]
    max = coordinate_Min_Max_List[x*2+1]
    if min<y<max:
      im.putpixel((x,y),(0,255,0))
    else:
      #可以把非红圈的上掩膜遮住
      pass

至此,就是类似opencv的算法实现,虽然还差翻转做与操作,但是已经比opencv生成的效果好,写成函数后续调用,

然后就是简单的翻转90度,再调用一次这个函数再做一遍

def Cal_S(im):
  im_0 = im.rotate(0)
  im_90 = im.rotate(90, expand=True)
  
  im_0 = fillPoly(im_0)
  im_90 = fillPoly(im_90)
  im_90 = im_90.rotate(-90, expand=True)

  i=0
  for x in range(im.size[0]):
    for y in range(im.size[1]):
      if(im_0.getpixel((x,y))==(0,255,0) and
      im_90.getpixel((x,y))==(0,255,0)):
        im.putpixel((x,y),(0,255,0))
        i+=1
  return i/(im.size[0]*im.size[1])

做两遍的效果图

Python计算不规则图形面积算法实现解析Python计算不规则图形面积算法实现解析

可以看到效果非常不错,但是依旧有个别图像有问题,比如十字分布的,

但现在的话误差已经降低非常多了,这些极其个别的十字现象可以手动把原图切割一下,或者干脆不处理了

Python计算不规则图形面积算法实现解析

所有代码,画出绿图片为了方便直观的查看,函数中可以把图片顺便保存一下,总体看一下效果

from PIL import Image

def pixel_wanted(pix):
  return pix==(237,28, 36)

def fillPoly(im):
  coordinate_List = []

  top_Pixel = (0,0,0)
  for x in range(im.size[0]):
    flag = False #初始化每一列翻转位为False
    for y in range(im.size[1]):
      current_pixel = im.getpixel((x,y))
      last_pixel = im.getpixel((x,y-1)) if y>0 else top_Pixel
      #翻转判定
      if pixel_wanted(current_pixel) and \
          not pixel_wanted(last_pixel):
        flag = True
      if flag and not pixel_wanted(current_pixel):
        flag = False
      if(flag):
        coordinate_List.append((x,y))
  coordinate_Min_Max_List = []
  #找最小最大
  for i in range(im.size[0]):
    min=-1
    max=-1
    for coordinate in coordinate_List:
      if coordinate[0] == i:
        min = coordinate[1]
        max = coordinate[1]
        break
    for coordinate in coordinate_List:
      if coordinate[0] == i:
        if coordinate[1]>max:
          max = coordinate[1]
    coordinate_Min_Max_List.append(min)
    coordinate_Min_Max_List.append(max)
  #上色
  for x in range(im.size[0]):
    for y in range(im.size[1]):
      min = coordinate_Min_Max_List[x*2]
      max = coordinate_Min_Max_List[x*2+1]
      if min<y<max:
        im.putpixel((x,y),(0,255,0))
      else:
        #可以把非红圈的上掩膜遮住
        pass
  return im

def Cal_S(im):
  im_0 = im.rotate(0)
  im_90 = im.rotate(90, expand=True)

  im_0 = fillPoly(im_0)
  im_90 = fillPoly(im_90)
  im_90 = im_90.rotate(-90, expand=True)

  i=0
  for x in range(im.size[0]):
    for y in range(im.size[1]):
      if(im_0.getpixel((x,y))==(0,255,0) and
      im_90.getpixel((x,y))==(0,255,0)):
        im.putpixel((x,y),(0,255,0))
        i+=1
  return i/(im.size[0]*im.size[1])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python入门及进阶笔记 Python 内置函数小结
Aug 09 Python
跟老齐学Python之有容乃大的list(2)
Sep 15 Python
Python psutil模块简单使用实例
Apr 28 Python
Python中unittest模块做UT(单元测试)使用实例
Jun 12 Python
Python中集合的内建函数和内建方法学习教程
Aug 19 Python
Python的string模块中的Template类字符串模板用法
Jun 27 Python
分享Python开发中要注意的十个小贴士
Aug 30 Python
用python写一个windows下的定时关机脚本(推荐)
Mar 21 Python
Python编程判断一个正整数是否为素数的方法
Apr 14 Python
基于python实现的百度新歌榜、热歌榜下载器(附代码)
Aug 05 Python
Python 实现加密过的PDF文件转WORD格式
Feb 04 Python
tensorflow 实现从checkpoint中获取graph信息
Feb 10 Python
python实现连续变量最优分箱详解--CART算法
Nov 22 #Python
pycharm运行scrapy过程图解
Nov 22 #Python
python迭代器常见用法实例分析
Nov 22 #Python
python自动分箱,计算woe,iv的实例代码
Nov 22 #Python
python创建学生管理系统
Nov 22 #Python
Python如何计算语句执行时间
Nov 22 #Python
python生成器用法实例详解
Nov 22 #Python
You might like
PHP 数组实例说明
2008/08/18 PHP
PHP可变函数的使用详解
2013/06/14 PHP
解析:使用php mongodb扩展时 需要注意的事项
2013/06/18 PHP
添加到收藏夹代码(兼容几乎所有的浏览器)
2007/01/09 Javascript
用JavaScript事件串连执行多个处理过程的方法
2007/03/09 Javascript
jQuery 性能优化指南(3)
2009/05/21 Javascript
初窥JQuery(一)jquery选择符 必备知识点
2010/11/25 Javascript
Javascript中匿名函数的多种调用方式总结
2013/12/06 Javascript
jQuery在iframe中无法弹出对话框的解决方法
2014/01/12 Javascript
jQuery 滑动方法slideDown向下滑动元素
2014/01/16 Javascript
setInterval与clearInterval的使用示例代码
2014/01/28 Javascript
javascript和jquery实现设置和移除文本框默认值效果代码
2015/01/13 Javascript
js进行表单验证实例分析
2015/02/10 Javascript
超赞的动手创建JavaScript框架的详细教程
2015/06/30 Javascript
js和jQuery设置Opacity半透明 兼容IE6
2016/05/24 Javascript
Nodejs搭建wss服务器教程
2017/05/24 NodeJs
webstorm添加vue.js支持的方法教程
2017/07/05 Javascript
React中使用UMEditor的方法示例
2019/12/27 Javascript
一篇文章带你从零快速上手Rollup
2020/09/07 Javascript
[48:32]VGJ.T vs Fnatic 2018国际邀请赛小组赛BO2 第一场 8.16
2018/08/17 DOTA
[52:36]VGJ.S vs Serenity 2018国际邀请赛小组赛BO2 第一场 8.19
2018/08/21 DOTA
python 实现对文件夹内的文件排序编号
2018/04/12 Python
浅析Python四种数据类型
2018/09/26 Python
Python 识别12306图片验证码物品的实现示例
2020/01/20 Python
通过实例解析python subprocess模块原理及用法
2020/10/10 Python
python判断all函数输出结果是否为true的方法
2020/12/03 Python
CSS3自定义滚动条样式 ::webkit-scrollbar的示例代码详解
2020/06/01 HTML / CSS
英国豪华家具和家居用品购物网站:Teddy Beau
2020/10/12 全球购物
RealTek面试题
2016/06/28 面试题
电气专业推荐信范文
2013/11/18 职场文书
给同学的道歉信
2014/01/16 职场文书
房地产活动策划方案
2014/05/14 职场文书
财务科长个人对照检查材料
2014/09/18 职场文书
证券公司客户经理岗位职责
2015/04/09 职场文书
解决Pytorch修改预训练模型时遇到key不匹配的情况
2021/06/05 Python
十大最强格斗系宝可梦,超梦X仅排第十,第二最重格斗礼仪
2022/03/18 日漫