Python计算不规则图形面积算法实现解析


Posted in Python onNovember 22, 2019

这篇文章主要介绍了Python计算不规则图形面积算法实现解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

介绍:大三上做一个医学影像识别的项目,医生在原图上用红笔标记病灶点,通过记录红色的坐标位置可以得到病灶点的外接矩形,但是后续会涉及到红圈内的面积在外接矩形下的占比问题,有些外接矩形内有多个红色标记,在使用网上的opencv的fillPoly填充效果非常不理想,还有类似python计算任意多边形方法也不理想的情况下,自己探索出的一种效果还不错的计算多圈及不规则图形的面积的算法。

能较为准确的计算出不规则图形的面积

正文:算法的思想很简单,遍历图片每一列,通过色差判断是否遇到标记圈,将坐标全部记录,对每一列的坐标都进行最小行和最大行记录,确定每一列的最小和最大的坐标,然后上色(类似opencv的fillPoly的实现,但是细节有些区别),只是这样效果并不好,将图片旋转90度,再做一边,将两个图片的结果放在一起做与操作,得到结果就能很好的处理多圈的标记问题和多算面积的问题(比如上面的08-LM),

Python计算不规则图形面积算法实现解析

算法实现

全程只用pillow库

首先先用屏幕拾色器获取目标颜色的rgb值,我这种情况下就是(237,28,36),前期截取外接矩形也是要这一步的,颜色也一致

def pixel_wanted(pix):
   return pix==(237,28, 36)

每一列都设定翻转位初始为False,如果上一个像素点不是目标色,当前是目标色则开始记录,一旦不是目标色,停止检测

top_Pixel都设定为黑色(0,0,0)因为有图片最上方就是目标色,导致判定出问题,直接让最上面的像素初始化是黑色

coordinate_List记录了所有符合的点坐标

coordinate_List = []
top_Pixel = (0,0,0)
for x in range(im.size[0]):
  flag = False #初始化每一列翻转位为False
  for y in range(im.size[1]):
    current_pixel = im.getpixel((x,y))
    last_pixel = im.getpixel((x,y-1)) if y>0 else top_Pixel
    #翻转判定
    if pixel_wanted(current_pixel) and \
        not pixel_wanted(last_pixel):
      flag = True
    if flag and not pixel_wanted(current_pixel):
      flag = False
    if(flag):
      coordinate_List.append((x,y))

coordinate_List中的点如下图

Python计算不规则图形面积算法实现解析

然后就是将上面获得coordinate列表进行处理

将coordinate列表中每一列的最小坐标和最大坐标进行记录

因为每一列记录的数量并不确定(应该可以在上一步改进一下),所以需要遍历多次

首先找到第一个列出现的坐标,将它的行信息记录(行信息最小确定),

然后遍历出全部的同列的坐标,比较行坐标,如果大的就将最大的代替(行信息最大确定),用一个新的列表记录数据

coordinate_Min_Max_List = []
#找最小最大
for i in range(im.size[0]):
  min=-1
  max=-1
  for coordinate in coordinate_List:
    if coordinate[0] == i:
      min = coordinate[1]
      max = coordinate[1]
      break
  for coordinate in coordinate_List:
    if coordinate[0] == i:
      if coordinate[1]>max:
        max = coordinate[1]
  coordinate_Min_Max_List.append(min)
  coordinate_Min_Max_List.append(max)

其中要将min和max都初始化为一个坐标不存在的值比如-1,为了在下一步多圈且有空隙情况下,不会出现残影现象,如下图

Python计算不规则图形面积算法实现解析Python计算不规则图形面积算法实现解析

上一步的最后得到一个列表,第n列的最小行和最大行分别是第2n和2n+1元素,结果中的-1,为了让下一步不会画进去

Python计算不规则图形面积算法实现解析

然后就是绘制图片了,每一列将列表中对应的最小行到最大行涂满

#上色
for x in range(im.size[0]):
  for y in range(im.size[1]):
    min = coordinate_Min_Max_List[x*2]
    max = coordinate_Min_Max_List[x*2+1]
    if min<y<max:
      im.putpixel((x,y),(0,255,0))
    else:
      #可以把非红圈的上掩膜遮住
      pass

至此,就是类似opencv的算法实现,虽然还差翻转做与操作,但是已经比opencv生成的效果好,写成函数后续调用,

然后就是简单的翻转90度,再调用一次这个函数再做一遍

def Cal_S(im):
  im_0 = im.rotate(0)
  im_90 = im.rotate(90, expand=True)
  
  im_0 = fillPoly(im_0)
  im_90 = fillPoly(im_90)
  im_90 = im_90.rotate(-90, expand=True)

  i=0
  for x in range(im.size[0]):
    for y in range(im.size[1]):
      if(im_0.getpixel((x,y))==(0,255,0) and
      im_90.getpixel((x,y))==(0,255,0)):
        im.putpixel((x,y),(0,255,0))
        i+=1
  return i/(im.size[0]*im.size[1])

做两遍的效果图

Python计算不规则图形面积算法实现解析Python计算不规则图形面积算法实现解析

可以看到效果非常不错,但是依旧有个别图像有问题,比如十字分布的,

但现在的话误差已经降低非常多了,这些极其个别的十字现象可以手动把原图切割一下,或者干脆不处理了

Python计算不规则图形面积算法实现解析

所有代码,画出绿图片为了方便直观的查看,函数中可以把图片顺便保存一下,总体看一下效果

from PIL import Image

def pixel_wanted(pix):
  return pix==(237,28, 36)

def fillPoly(im):
  coordinate_List = []

  top_Pixel = (0,0,0)
  for x in range(im.size[0]):
    flag = False #初始化每一列翻转位为False
    for y in range(im.size[1]):
      current_pixel = im.getpixel((x,y))
      last_pixel = im.getpixel((x,y-1)) if y>0 else top_Pixel
      #翻转判定
      if pixel_wanted(current_pixel) and \
          not pixel_wanted(last_pixel):
        flag = True
      if flag and not pixel_wanted(current_pixel):
        flag = False
      if(flag):
        coordinate_List.append((x,y))
  coordinate_Min_Max_List = []
  #找最小最大
  for i in range(im.size[0]):
    min=-1
    max=-1
    for coordinate in coordinate_List:
      if coordinate[0] == i:
        min = coordinate[1]
        max = coordinate[1]
        break
    for coordinate in coordinate_List:
      if coordinate[0] == i:
        if coordinate[1]>max:
          max = coordinate[1]
    coordinate_Min_Max_List.append(min)
    coordinate_Min_Max_List.append(max)
  #上色
  for x in range(im.size[0]):
    for y in range(im.size[1]):
      min = coordinate_Min_Max_List[x*2]
      max = coordinate_Min_Max_List[x*2+1]
      if min<y<max:
        im.putpixel((x,y),(0,255,0))
      else:
        #可以把非红圈的上掩膜遮住
        pass
  return im

def Cal_S(im):
  im_0 = im.rotate(0)
  im_90 = im.rotate(90, expand=True)

  im_0 = fillPoly(im_0)
  im_90 = fillPoly(im_90)
  im_90 = im_90.rotate(-90, expand=True)

  i=0
  for x in range(im.size[0]):
    for y in range(im.size[1]):
      if(im_0.getpixel((x,y))==(0,255,0) and
      im_90.getpixel((x,y))==(0,255,0)):
        im.putpixel((x,y),(0,255,0))
        i+=1
  return i/(im.size[0]*im.size[1])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
PHP魔术方法__ISSET、__UNSET使用实例
Nov 25 Python
Python正则表达式匹配HTML页面编码
Apr 08 Python
回调函数的意义以及python实现实例
Jun 20 Python
python读取excel表格生成erlang数据
Aug 26 Python
使用Python读取大文件的方法
Feb 11 Python
python代码 FTP备份交换机配置脚本实例解析
Aug 01 Python
pytorch实现用Resnet提取特征并保存为txt文件的方法
Aug 20 Python
python获取Linux发行版名称
Aug 30 Python
Django-migrate报错问题解决方案
Apr 21 Python
Java爬虫技术框架之Heritrix框架详解
Jul 22 Python
matplotlib常见函数之plt.rcParams、matshow的使用(坐标轴设置)
Jan 05 Python
使用numpy实现矩阵的翻转(flip)与旋转
Jun 03 Python
python实现连续变量最优分箱详解--CART算法
Nov 22 #Python
pycharm运行scrapy过程图解
Nov 22 #Python
python迭代器常见用法实例分析
Nov 22 #Python
python自动分箱,计算woe,iv的实例代码
Nov 22 #Python
python创建学生管理系统
Nov 22 #Python
Python如何计算语句执行时间
Nov 22 #Python
python生成器用法实例详解
Nov 22 #Python
You might like
PHP使用数组实现队列
2012/02/05 PHP
php操作XML、读取数据和写入数据的实现代码
2014/08/15 PHP
PHP防盗链代码实例
2014/08/27 PHP
php实现字符串首字母大写和单词首字母大写的方法
2015/03/14 PHP
php支持断点续传、分块下载的类
2016/05/02 PHP
Yii隐藏URL中index.php的方法
2016/07/12 PHP
PHP实现将MySQL重复ID二维数组重组为三维数组的方法
2016/08/01 PHP
使用Laravel中的查询构造器实现增删改查功能
2019/09/03 PHP
浅谈laravel aliases别名的原理
2019/10/24 PHP
cssQuery()的下载与使用方法
2007/01/12 Javascript
javascript深入理解js闭包
2010/07/03 Javascript
js 设置缓存及获取设置的缓存
2014/05/08 Javascript
深入分析js的冒泡事件
2014/12/05 Javascript
jquery Easyui快速开发总结
2015/08/20 Javascript
仿iframe效果Aajx文件上传实例
2016/11/18 Javascript
input输入框内容实时监测(附代码)
2017/08/15 Javascript
vue.js实现带日期星期的数字时钟功能示例
2018/08/28 Javascript
JavaScript查看代码运行效率console.time()与console.timeEnd()用法
2019/01/18 Javascript
validform表单验证的实现方法
2019/03/08 Javascript
JavaScript获取某一天所在的星期
2019/09/05 Javascript
js实现div色块碰撞
2020/01/16 Javascript
python队列queue模块详解
2018/04/27 Python
Sanic框架安装与简单入门示例
2018/07/16 Python
解决python3捕获cx_oracle抛出的异常错误问题
2018/10/18 Python
Pycharm取消py脚本中SQL识别的方法
2018/11/29 Python
python logging添加filter教程
2019/12/24 Python
Pymysql实现往表中插入数据过程解析
2020/06/02 Python
Manuka Doctor英国官网:真正的麦卢卡蜂蜜和护肤品
2018/10/26 全球购物
澳大利亚最受欢迎的美发用品目的地:AMR
2019/08/28 全球购物
网络工程师个人的自我评价范文
2013/10/01 职场文书
单位未婚证明范本
2014/01/18 职场文书
婚礼主持词开场白
2014/03/13 职场文书
幼儿园社区活动总结
2014/07/07 职场文书
幼儿园教师考核评语
2014/12/31 职场文书
2015年八一建军节活动总结
2015/03/20 职场文书
民警忠诚教育心得体会
2016/01/23 职场文书