python numpy中multiply与*及matul 的区别说明


Posted in Python onMay 26, 2021

1、对于矩阵(matrix)而言

multiply是对应元素相乘,而 * 、np.matmul() 函数 与 np.dot()函数 相当于矩阵乘法(矢量积),对应的列数和行数必须满足乘法规则;如果希望以数量积的方式进行,则必须使用 np.multiply 函数,如下所示:

a = np.mat([[1, 2, 3, 4, 5]])
b = np.mat([[1,2,3,4,5]])
c=np.multiply(a,b)
print(c)

结果是

[[ 1 4 9 16 25]]
a = np.mat([[1, 2, 3, 4, 5]])
b = np.mat([ [1],[2],[3],[4],[5] ] )
d=a*b
print(d) #a是shape(1,5),b是shape(5,1),结果是一个实数

结果是

[[55]]

2、对于数组(Array)而言

* 与 multiply均表示的是数量积(即对应元素的乘积相加),np.matmul与np.dot表示的是矢量积(即矩阵乘法)。

代码:

if __name__ == '__main__':
    w = np.array([[1,2],[3,4]])
    x = np.array([[1,3],[2,4]])
    w1 = np.array([[1,2],[3,4]])
    x1 = np.array([[1,2]])
    w_mat = np.mat([[1,2],[3,4]])
    x_mat = np.mat([[1,3],[2,4]])
    print("x1.shape:",np.shape(x1))
    w_x_start = w*x
    w_x_dot = np.dot(w,x)
    x_w_dot = np.dot(x,w)
    w_x_matmul = np.matmul(w, x)
    x_w_matmul = np.matmul(x, w)
    w_x_multiply = np.multiply(w,x)
    x_w_multiply = np.multiply(x, w)
    #w1_x1_matmul = np.matmul(w1, x1)
    x1_w1_matmul = np.matmul(x1, w1)
    w_x_mat_matmul = np.matmul(w_mat,x_mat)
    x_w_mat_matmul = np.matmul(x_mat, w_mat)
    w_x_mat_start = w_mat*x_mat
    x_w_mat_start = x_mat*w_mat
    w_x_mat_dot = np.dot(w_mat,x_mat)
    x_w_mat_dot = np.dot(x_mat,w_mat)
    w_x_mat_multiply = np.multiply(w_mat,x_mat)
    x_w_mat_multiply = np.multiply(x_mat,w_mat)
 
    print("W.shape:", np.shape(w))
    print("x.shape:", np.shape(x))
    print("w_x_start.shape:", np.shape(w_x_start))
    print("w_x_dot.shape:", np.shape(w_x_dot))
    print("x_w_dot.shape:", np.shape(x_w_dot))
    print("x1_w1_matmul.shape::", np.shape(x1_w1_matmul))
 
    print("做Array数组运算时:", '\n')
    print("w_x_start:", w_x_start)
    print("w_x_dot:", w_x_dot)
    print("x_w_dot:", x_w_dot)
    print("w_x_matmul:", w_x_matmul)
    print("x_w_matmul:", x_w_matmul)
    print("w_x_multiply:", w_x_multiply)
    print("x_w_multiply:", x_w_multiply)
    # print("w1_x1_matmul:", w1_x1_matmul)
    print("x1_w1_matmul:", x1_w1_matmul)
 
    print("做matrix矩阵运算时:", '\n')
    print("w_x_mat_start:", w_x_mat_start)
    print("x_w_mat_start:", x_w_mat_start)
    print("x_w_mat_dot:", x_w_mat_dot)
    print("w_x_mat_dot:", w_x_mat_dot)
    print("w_x_mat_matmul:",w_x_mat_matmul)
    print("x_w_mat_matmul:", x_w_mat_matmul)
    print("w_x_mat_multiply",w_x_mat_multiply)
    print("x_w_mat_multiply", x_w_mat_multiply)
x1.shape: (1, 2)
W.shape: (2, 2)
x.shape: (2, 2)
w_x_start.shape: (2, 2)
w_x_dot.shape: (2, 2)
x_w_dot.shape: (2, 2)
x1_w1_matmul.shape:: (1, 2)
做Array数组运算时:
 
w_x_start: [[ 1  6]
 [ 6 16]]
w_x_dot: [[ 5 11]
 [11 25]]
x_w_dot: [[10 14]
 [14 20]]
w_x_matmul: [[ 5 11]
 [11 25]]
x_w_matmul: [[10 14]
 [14 20]]
w_x_multiply: [[ 1  6]
 [ 6 16]]
x_w_multiply: [[ 1  6]
 [ 6 16]]
x1_w1_matmul: [[ 7 10]]
做matrix矩阵运算时:
 
w_x_mat_start: [[ 5 11]
 [11 25]]
x_w_mat_start: [[10 14]
 [14 20]]
x_w_mat_dot: [[10 14]
 [14 20]]
w_x_mat_dot: [[ 5 11]
 [11 25]]
w_x_mat_matmul: [[ 5 11]
 [11 25]]
x_w_mat_matmul: [[10 14]
 [14 20]]
w_x_mat_multiply [[ 1  6]
 [ 6 16]]
x_w_mat_multiply [[ 1  6]
 [ 6 16]]

python中转置的优先级高于乘法运算 例如:

a = np.mat([[2, 3, 4]])
b = np.mat([[1,2,3]] )
d=a*b.T
print(d)

结果是

[[20]]

其中a为1行3列,b也为1行3列,按理来说直接计算a*b是不能运算,但是计算d=a*b.T是可以的,结果是20,说明运算顺序是先转置再计算a与b转置的积,*作为矩阵乘法,值得注意的在执行*运算的时候必须符合行列原则。

numpy中tile()函数的用法

b = tile(a,(m,n)):即是把a数组里面的元素复制n次放进一个数组c中,然后再把数组c复制m次放进一个数组b中,通俗地讲就是将a在行方向上复制m次,在列方向上复制n次。

python中的 sum 和 np.sum 是不一样的,如果只写sum的话,表示的是数组中对应的维度相加,如果写 np.sum 的话,表示一个数组中的维数和列数上的数都加在一起。

如下图所示:

python numpy中multiply与*及matul 的区别说明

补充:总结:numpy中三个乘法运算multiply,dot和* 的区别

引言:

本人在做机器学习的练习1的时候,时常抛出错误:

python numpy中multiply与*及matul 的区别说明

Not aligned是什么意思呢?

意思是两个矩阵相乘无意义。

线性代数中mxn 和 nxp的矩阵才能相乘,其结果是mxp的矩阵。

出错源代码:

def gradientDescent(X,y,theta,alpha,iteration):
    colunms = int(theta.ravel().shape[1])
    thetai = np.matrix(np.zeros(theta.shape))
    cost = np.zeros(iteration)
                       
    for i in range(iteration):
        error = X*theta.T-y
        for j in range(colunms):
            a = np.sum(error*X[:,j])/len(X) ########## error!
            thetai[0,j] = thetai[0,j] - alpha*a
            
        theta = thetai    
        cost[i] = computeCost(X, y, theta)        
    return theta,cost

这里error是一个nx1的矩阵,theta.T也是一个nx1的矩阵。

而矩阵之间*运算符表示矩阵乘法。我们这里想实现矩阵的对应元素相乘,因此应该用np.multiply()实现。

总结:

(读者可使用简单的举例自行验证)

1.*用法:

矩阵与矩阵:矩阵乘法(matrix)

数组与数组:对应位置相乘(array)

2.np.dot()用法:

矩阵相乘的结果

3.np.multiply()用法:

数组、矩阵都得到对应位置相乘。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python连接池实现示例程序
Nov 26 Python
python的Template使用指南
Sep 11 Python
python编写的最短路径算法
Mar 25 Python
举例讲解Python中字典的合并值相加与异或对比
Jun 04 Python
Python中单、双下划线的区别总结
Dec 01 Python
解决Django删除migrations文件夹中的文件后出现的异常问题
Aug 31 Python
python标准库OS模块函数列表与实例全解
Mar 10 Python
Pycharm内置终端及远程SSH工具的使用教程图文详解
Mar 19 Python
python实现读取类别频数数据画水平条形图案例
Apr 24 Python
python实现三种随机请求头方式
Jan 05 Python
Python 中数组和数字相乘时的注意事项说明
May 10 Python
Python Pygame实战之塔防游戏的实现
Mar 17 Python
python文本处理的方案(结巴分词并去除符号)
Django操作cookie的实现
May 26 #Python
pandas中DataFrame检测重复值的实现
python 中的@运算符使用
May 26 #Python
Python 实现定积分与二重定积分的操作
May 26 #Python
python 解决微分方程的操作(数值解法)
python 实现体质指数BMI计算
May 26 #Python
You might like
DC漫画《蝙蝠侠和猫女》图透 猫女怀孕老爷当爹
2020/04/09 欧美动漫
地摊中国 - 珍藏老照片
2020/08/18 杂记
PHP导出EXCEL快速开发指南--PHPEXCEL的使用详解
2013/06/03 PHP
PHP删除目录及目录下所有文件的方法详解
2013/06/06 PHP
thinkPHP自动验证机制详解
2016/12/05 PHP
初学Javascript的一些总结
2008/11/03 Javascript
JavaScript 在各个浏览器中执行的耐性
2009/04/06 Javascript
js调用后台servlet方法实例
2013/06/09 Javascript
jQuery中delegate和on的用法与区别详细解析
2014/01/26 Javascript
Js使用WScript.Shell对象执行.bat文件和cmd命令
2014/12/18 Javascript
百度UEditor编辑器如何关闭抓取远程图片功能
2015/03/03 Javascript
JavaScript DOM基础
2015/04/13 Javascript
学习Javascript面向对象编程之封装
2016/02/23 Javascript
AngularJs定制样式插入到ueditor中的问题小结
2016/08/01 Javascript
jQuery数组处理函数整理
2016/08/03 Javascript
js仿微信语音播放实现思路
2016/12/12 Javascript
jquery操作ul的一些操作笔记整理(干货)
2017/08/31 jQuery
浅谈SpringMVC中post checkbox 多选框value的值(隐藏域方式)
2018/01/08 Javascript
通过nodejs 服务器读取HTML文件渲染到页面的方法
2018/05/17 NodeJs
JavaScript中toLocaleString()和toString()的区别实例分析
2018/08/14 Javascript
解决angular2在双向数据绑定时[(ngModel)]无法使用的问题
2018/09/13 Javascript
浅谈Vuex的this.$store.commit和在Vue项目中引用公共方法
2020/07/24 Javascript
[01:25]DOTA2自定义游戏灵园鬼域等你踏足
2015/10/30 DOTA
[02:12]打造更好的电竞完美世界:完美盛典回顾篇
2018/12/19 DOTA
python实现定时同步本机与北京时间的方法
2015/03/24 Python
使用Python的Tornado框架实现一个简单的WebQQ机器人
2015/04/24 Python
python实现读取命令行参数的方法
2015/05/22 Python
Python的Django框架安装全攻略
2015/07/15 Python
Django自关联实现多级联动查询实例
2020/05/19 Python
零基础学python应该从哪里入手
2020/08/11 Python
校园十佳歌手策划书
2014/01/22 职场文书
公共场所标语
2014/06/30 职场文书
部门活动策划方案
2014/08/16 职场文书
大学教师师德师风演讲稿
2014/08/22 职场文书
中国世界遗产导游词
2015/02/13 职场文书
因家庭原因离职的辞职信范文
2015/05/12 职场文书