python 解决微分方程的操作(数值解法)


Posted in Python onMay 26, 2021

Python求解微分方程(数值解法)

对于一些微分方程来说,数值解法对于求解具有很好的帮助,因为难以求得其原方程。

比如方程:

python 解决微分方程的操作(数值解法)

但是我们知道了它的初始条件,这对于我们叠代求解很有帮助,也是必须的。

python 解决微分方程的操作(数值解法)

那么现在我们也用Python去解决这一些问题,一般的数值解法有欧拉法、隐式梯形法等,我们也来看看这些算法对叠代的精度有什么区别?

```python
```python
import numpy as np
from scipy.integrate import odeint
from matplotlib import pyplot as plt
import os
#先从odeint函数直接求解微分方程
#创建欧拉法的类
class Euler:
    #构造方法,当创建对象的时候,自动执行的函数
    def __init__(self,h,y0):
        #将对象与对象的属性绑在一起
        self.h = h
        self.y0 = y0
        self.y = y0
        self.n = 1/self.h
        self.x = 0
        self.list = [1]
        #欧拉法用list列表,其x用y叠加储存
        self.list2 = [1]
        self.y1 = y0
        #改进欧拉法用list2列表,其x用y1叠加储存
        self.list3 = [1]
        self.y2 = y0
        #隐式梯形法用list3列表,其x用y2叠加储存
    #欧拉法的算法,算法返回t,x
    def countall(self):
        for i in range(int(self.n)):
            y_dere = -20*self.list[i]
            #欧拉法叠加量y_dere = -20 * x
            y_dere2 = -20*self.list2[i] + 0.5*400*self.h*self.list2[i]
            #改进欧拉法叠加量 y_dere2 = -20*x(k) + 0.5*400*delta_t*x(k)
            y_dere3 = (1-10*self.h)*self.list3[i]/(1+10*self.h)
            #隐式梯形法计算 y_dere3 = (1-10*delta_t)*x(k)/(1+10*delta_t)
            self.y += self.h*y_dere
            self.y1 += self.h*y_dere2
            self.y2 =y_dere3
            self.list.append(float("%.10f" %self.y))
            self.list2.append(float("%.10f"%self.y1))
            self.list3.append(float("%.10f"%self.y2))
        return np.linspace(0,1,int(self.n+1)), self.list,self.list2,self.list3
step = input("请输入你需要求解的步长:")
step = float(step)
work1 = Euler(step,1)
ax1,ay1,ay2,ay3 = work1.countall()
#画图工具plt
plt.figure(1)
plt.subplot(1,3,1)
plt.plot(ax1,ay1,'s-.',MarkerFaceColor = 'g')
plt.xlabel('横坐标t',fontproperties = 'simHei',fontsize =20)
plt.ylabel('纵坐标x',fontproperties = 'simHei',fontsize =20)
plt.title('欧拉法求解微分线性方程步长为'+str(step),fontproperties = 'simHei',fontsize =20)
plt.subplot(1,3,2)
plt.plot(ax1,ay2,'s-.',MarkerFaceColor = 'r')
plt.xlabel('横坐标t',fontproperties = 'simHei',fontsize =20)
plt.ylabel('纵坐标x',fontproperties = 'simHei',fontsize =20)
plt.title('改进欧拉法求解微分线性方程步长为'+str(step),fontproperties = 'simHei',fontsize =20)
plt.subplot(1,3,3)
plt.plot(ax1,ay3,'s-.',MarkerFaceColor = 'b')
plt.xlabel('横坐标t',fontproperties = 'simHei',fontsize =20)
plt.ylabel('纵坐标x',fontproperties = 'simHei',fontsize =20)
plt.title('隐式梯形法求解微分线性方程步长为'+str(step),fontproperties = 'simHei',fontsize =20)
plt.figure(2)
plt.plot(ax1,ay1,ax1,ay2,ax1,ay3,'s-.',MarkerSize = 3)
plt.xlabel('横坐标t',fontproperties = 'simHei',fontsize =20)
plt.ylabel('纵坐标x',fontproperties = 'simHei',fontsize =20)
plt.title('三合一图像步长为'+str(step),fontproperties = 'simHei',fontsize =20)
ax = plt.gca()
ax.legend(('$Eular$','$fixed Eular$','$trapezoid$'),loc = 'lower right',title = 'legend')
plt.show()
os.system("pause")

对于欧拉法,它的叠代方法是:

python 解决微分方程的操作(数值解法)

改进欧拉法的叠代方法:

python 解决微分方程的操作(数值解法)

隐式梯形法:

python 解决微分方程的操作(数值解法)

对于不同的步长,其求解的精度也会有很大的不同,我先放一几张结果图:

python 解决微分方程的操作(数值解法)python 解决微分方程的操作(数值解法)

补充:基于python的微分方程数值解法求解电路模型

安装环境包

安装numpy(用于调节range) 和 matplotlib(用于绘图)

在命令行输入

pip install numpy 
pip install matplotlib

电路模型和微分方程

模型1

无损害,电容电压为5V,电容为0.01F,电感为0.01H的并联谐振电路

电路模型1

python 解决微分方程的操作(数值解法)

微分方程1

python 解决微分方程的操作(数值解法)

模型2

带电阻损耗的电容电压为5V,电容为0.01F,电感为0.01H的的并联谐振

电路模型2

python 解决微分方程的操作(数值解法)

 

 

微分方程2

python 解决微分方程的操作(数值解法)

python代码

模型1

import numpy as np
import matplotlib.pyplot as plt
 
L = 0.01  #电容的值 F
C = 0.01  #电感的值 L
u_0 = 5   #电容的初始电压
u_dot_0 = 0
 
def equition(u,u_dot):#二阶方程
    u_double_dot = -u/(L*C)
    return u_double_dot
 
def draw_plot(time_step,time_scale):#时间步长和范围
    u = u_0
    u_dot = u_dot_0  #初始电压和电压的一阶导数
    time_list = [0] #时间lis
    Votage = [u] #电压list
    plt.figure()
    for time in np.arange(0,time_scale,time_step):#使用欧拉数值计算法 一阶近似
        u_double_dot = equition(u,u_dot) #二阶导数
        u_dot = u_dot + u_double_dot*time_step #一阶导数
        u = u + u_dot*time_step #电压
        time_list.append(time) #结果添加
        Votage.append(u) #结果添加
        print(u)
    plt.plot(time_list,Votage,"b--",linewidth=1) #画图
    plt.show()
    plt.savefig("easyplot.png")
 
if __name__ == '__main__':
    draw_plot(0.0001,1)

模型2

import numpy as np
import matplotlib.pyplot as plt
 
L = 0.01  #电容的值 F
C = 0.01  #电感的值 L
R = 0.1   #电阻值
u_0 = 5   #电容的初始电压
u_dot_0 = 0
 
def equition(u,u_dot):#二阶方程
    u_double_dot =(-R*C*u_dot -u)/(L*C)
    return u_double_dot
 
def draw_plot(time_step,time_scale):#时间步长和范围
    u = u_0
    u_dot = u_dot_0  #初始电压和电压的一阶导数
    time_list = [0] #时间lis
    Votage = [u] #电压list
    plt.figure()
    for time in np.arange(0,time_scale,time_step):#使用欧拉数值计算法 一阶近似
        u_double_dot = equition(u,u_dot) #二阶导数
        u_dot = u_dot + u_double_dot*time_step #一阶导数
        u = u + u_dot*time_step #电压
        time_list.append(time) #结果添加
        Votage.append(u) #结果添加
        print(u)
    plt.plot(time_list,Votage,"b-",linewidth=1) #画图
    plt.show()
    plt.savefig("result.png")
 
if __name__ == '__main__':
    draw_plot(0.0001,1)

数值解结果

模型1

python 解决微分方程的操作(数值解法)

纵轴为电容两端电压,横轴为时间与公式计算一致​​

模型2结果

python 解决微分方程的操作(数值解法)

纵轴

为电容两端电压,横轴为时间标题

最后我们可以根据调节电阻到达不同的状态

python 解决微分方程的操作(数值解法)

R=0.01,欠阻尼

python 解决微分方程的操作(数值解法)

R=1.7,临界阻尼

python 解决微分方程的操作(数值解法)

R=100,过阻尼

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python语言编写电脑时间自动同步小工具
Mar 08 Python
python使用三角迭代计算圆周率PI的方法
Mar 20 Python
Django Highcharts制作图表
Aug 27 Python
Python整型运算之布尔型、标准整型、长整型操作示例
Jul 21 Python
python利用sklearn包编写决策树源代码
Dec 21 Python
解决pycharm运行时interpreter为空的问题
Oct 29 Python
python实现贪吃蛇游戏
Mar 21 Python
Python 中PyQt5 点击主窗口弹出另一个窗口的实现方法
Jul 04 Python
django ManyToManyField多对多关系的实例详解
Aug 09 Python
Python使用Numpy模块读取文件并绘制图片
May 13 Python
Python通过Schema实现数据验证方式
Nov 12 Python
Pandas加速代码之避免使用for循环
May 30 Python
python 实现体质指数BMI计算
May 26 #Python
Python 如何解决稀疏矩阵运算
Python selenium模拟网页点击爬虫交管12123违章数据
python scipy 稀疏矩阵的使用说明
python中os.path.join()函数实例用法
May 26 #Python
python实现简单的井字棋
May 26 #Python
python 办公自动化——基于pyqt5和openpyxl统计符合要求的名单
You might like
gd库图片下载类实现下载网页所有图片的php代码
2012/08/20 PHP
Laravel使用memcached缓存对文章增删改查进行优化的方法
2016/10/08 PHP
php使用正则表达式去掉html中的注释方法
2016/11/03 PHP
PHP如何解决微信文章图片防盗链
2020/12/09 PHP
js去除重复字符串两种实现方法
2013/01/09 Javascript
js实现防止被iframe的方法
2015/07/03 Javascript
使用JavaScript实现连续滚动字幕效果的方法
2015/07/07 Javascript
jQuery为动态生成的select元素添加事件的方法
2016/08/29 Javascript
浅析BootStrap Treeview的简单使用
2016/10/12 Javascript
JS实现物体带缓冲的间歇运动效果示例
2016/12/22 Javascript
JavaScript自动点击链接 防止绕过浏览器访问的方法
2017/01/19 Javascript
分分钟学会vue中vuex的应用(入门教程)
2017/09/14 Javascript
ES6 fetch函数与后台交互实现
2018/11/14 Javascript
vue实现搜索过滤效果
2019/05/28 Javascript
js实现一款简单踩白块小游戏(曾经很火)
2019/12/02 Javascript
vue+element实现图片上传及裁剪功能
2020/06/29 Javascript
移动端JS实现拖拽两种方法解析
2020/10/12 Javascript
基于JavaScript实现简单抽奖功能代码实例
2020/10/20 Javascript
JavaScript实现前端倒计时效果
2021/02/09 Javascript
Python类的专用方法实例分析
2015/01/09 Python
python制作爬虫并将抓取结果保存到excel中
2016/04/06 Python
python_opencv用线段画封闭矩形的实例
2018/12/05 Python
Python构建图像分类识别器的方法
2019/01/12 Python
Python同步遍历多个列表的示例
2019/02/19 Python
python mac下安装虚拟环境的图文教程
2019/04/12 Python
Python绘制堆叠柱状图的实例
2019/07/09 Python
一行python实现树形结构的方法
2019/08/09 Python
Python3.7 基于 pycryptodome 的AES加密解密、RSA加密解密、加签验签
2019/12/04 Python
解决tensorflow读取本地MNITS_data失败的原因
2020/06/22 Python
详解css3 flex弹性盒自动铺满写法
2020/09/17 HTML / CSS
Avène雅漾美国官方网站:敏感肌肤护理专家
2016/10/24 全球购物
中专生职业生涯规划书范文
2014/01/10 职场文书
学习张丽丽心得体会
2014/09/03 职场文书
2016年6月份红领巾广播稿
2015/12/21 职场文书
Python还能这么玩之只用30行代码从excel提取个人值班表
2021/06/05 Python
MYSQL 的10大经典优化案例场景实战
2021/09/14 MySQL