python 解决微分方程的操作(数值解法)


Posted in Python onMay 26, 2021

Python求解微分方程(数值解法)

对于一些微分方程来说,数值解法对于求解具有很好的帮助,因为难以求得其原方程。

比如方程:

python 解决微分方程的操作(数值解法)

但是我们知道了它的初始条件,这对于我们叠代求解很有帮助,也是必须的。

python 解决微分方程的操作(数值解法)

那么现在我们也用Python去解决这一些问题,一般的数值解法有欧拉法、隐式梯形法等,我们也来看看这些算法对叠代的精度有什么区别?

```python
```python
import numpy as np
from scipy.integrate import odeint
from matplotlib import pyplot as plt
import os
#先从odeint函数直接求解微分方程
#创建欧拉法的类
class Euler:
    #构造方法,当创建对象的时候,自动执行的函数
    def __init__(self,h,y0):
        #将对象与对象的属性绑在一起
        self.h = h
        self.y0 = y0
        self.y = y0
        self.n = 1/self.h
        self.x = 0
        self.list = [1]
        #欧拉法用list列表,其x用y叠加储存
        self.list2 = [1]
        self.y1 = y0
        #改进欧拉法用list2列表,其x用y1叠加储存
        self.list3 = [1]
        self.y2 = y0
        #隐式梯形法用list3列表,其x用y2叠加储存
    #欧拉法的算法,算法返回t,x
    def countall(self):
        for i in range(int(self.n)):
            y_dere = -20*self.list[i]
            #欧拉法叠加量y_dere = -20 * x
            y_dere2 = -20*self.list2[i] + 0.5*400*self.h*self.list2[i]
            #改进欧拉法叠加量 y_dere2 = -20*x(k) + 0.5*400*delta_t*x(k)
            y_dere3 = (1-10*self.h)*self.list3[i]/(1+10*self.h)
            #隐式梯形法计算 y_dere3 = (1-10*delta_t)*x(k)/(1+10*delta_t)
            self.y += self.h*y_dere
            self.y1 += self.h*y_dere2
            self.y2 =y_dere3
            self.list.append(float("%.10f" %self.y))
            self.list2.append(float("%.10f"%self.y1))
            self.list3.append(float("%.10f"%self.y2))
        return np.linspace(0,1,int(self.n+1)), self.list,self.list2,self.list3
step = input("请输入你需要求解的步长:")
step = float(step)
work1 = Euler(step,1)
ax1,ay1,ay2,ay3 = work1.countall()
#画图工具plt
plt.figure(1)
plt.subplot(1,3,1)
plt.plot(ax1,ay1,'s-.',MarkerFaceColor = 'g')
plt.xlabel('横坐标t',fontproperties = 'simHei',fontsize =20)
plt.ylabel('纵坐标x',fontproperties = 'simHei',fontsize =20)
plt.title('欧拉法求解微分线性方程步长为'+str(step),fontproperties = 'simHei',fontsize =20)
plt.subplot(1,3,2)
plt.plot(ax1,ay2,'s-.',MarkerFaceColor = 'r')
plt.xlabel('横坐标t',fontproperties = 'simHei',fontsize =20)
plt.ylabel('纵坐标x',fontproperties = 'simHei',fontsize =20)
plt.title('改进欧拉法求解微分线性方程步长为'+str(step),fontproperties = 'simHei',fontsize =20)
plt.subplot(1,3,3)
plt.plot(ax1,ay3,'s-.',MarkerFaceColor = 'b')
plt.xlabel('横坐标t',fontproperties = 'simHei',fontsize =20)
plt.ylabel('纵坐标x',fontproperties = 'simHei',fontsize =20)
plt.title('隐式梯形法求解微分线性方程步长为'+str(step),fontproperties = 'simHei',fontsize =20)
plt.figure(2)
plt.plot(ax1,ay1,ax1,ay2,ax1,ay3,'s-.',MarkerSize = 3)
plt.xlabel('横坐标t',fontproperties = 'simHei',fontsize =20)
plt.ylabel('纵坐标x',fontproperties = 'simHei',fontsize =20)
plt.title('三合一图像步长为'+str(step),fontproperties = 'simHei',fontsize =20)
ax = plt.gca()
ax.legend(('$Eular$','$fixed Eular$','$trapezoid$'),loc = 'lower right',title = 'legend')
plt.show()
os.system("pause")

对于欧拉法,它的叠代方法是:

python 解决微分方程的操作(数值解法)

改进欧拉法的叠代方法:

python 解决微分方程的操作(数值解法)

隐式梯形法:

python 解决微分方程的操作(数值解法)

对于不同的步长,其求解的精度也会有很大的不同,我先放一几张结果图:

python 解决微分方程的操作(数值解法)python 解决微分方程的操作(数值解法)

补充:基于python的微分方程数值解法求解电路模型

安装环境包

安装numpy(用于调节range) 和 matplotlib(用于绘图)

在命令行输入

pip install numpy 
pip install matplotlib

电路模型和微分方程

模型1

无损害,电容电压为5V,电容为0.01F,电感为0.01H的并联谐振电路

电路模型1

python 解决微分方程的操作(数值解法)

微分方程1

python 解决微分方程的操作(数值解法)

模型2

带电阻损耗的电容电压为5V,电容为0.01F,电感为0.01H的的并联谐振

电路模型2

python 解决微分方程的操作(数值解法)

 

 

微分方程2

python 解决微分方程的操作(数值解法)

python代码

模型1

import numpy as np
import matplotlib.pyplot as plt
 
L = 0.01  #电容的值 F
C = 0.01  #电感的值 L
u_0 = 5   #电容的初始电压
u_dot_0 = 0
 
def equition(u,u_dot):#二阶方程
    u_double_dot = -u/(L*C)
    return u_double_dot
 
def draw_plot(time_step,time_scale):#时间步长和范围
    u = u_0
    u_dot = u_dot_0  #初始电压和电压的一阶导数
    time_list = [0] #时间lis
    Votage = [u] #电压list
    plt.figure()
    for time in np.arange(0,time_scale,time_step):#使用欧拉数值计算法 一阶近似
        u_double_dot = equition(u,u_dot) #二阶导数
        u_dot = u_dot + u_double_dot*time_step #一阶导数
        u = u + u_dot*time_step #电压
        time_list.append(time) #结果添加
        Votage.append(u) #结果添加
        print(u)
    plt.plot(time_list,Votage,"b--",linewidth=1) #画图
    plt.show()
    plt.savefig("easyplot.png")
 
if __name__ == '__main__':
    draw_plot(0.0001,1)

模型2

import numpy as np
import matplotlib.pyplot as plt
 
L = 0.01  #电容的值 F
C = 0.01  #电感的值 L
R = 0.1   #电阻值
u_0 = 5   #电容的初始电压
u_dot_0 = 0
 
def equition(u,u_dot):#二阶方程
    u_double_dot =(-R*C*u_dot -u)/(L*C)
    return u_double_dot
 
def draw_plot(time_step,time_scale):#时间步长和范围
    u = u_0
    u_dot = u_dot_0  #初始电压和电压的一阶导数
    time_list = [0] #时间lis
    Votage = [u] #电压list
    plt.figure()
    for time in np.arange(0,time_scale,time_step):#使用欧拉数值计算法 一阶近似
        u_double_dot = equition(u,u_dot) #二阶导数
        u_dot = u_dot + u_double_dot*time_step #一阶导数
        u = u + u_dot*time_step #电压
        time_list.append(time) #结果添加
        Votage.append(u) #结果添加
        print(u)
    plt.plot(time_list,Votage,"b-",linewidth=1) #画图
    plt.show()
    plt.savefig("result.png")
 
if __name__ == '__main__':
    draw_plot(0.0001,1)

数值解结果

模型1

python 解决微分方程的操作(数值解法)

纵轴为电容两端电压,横轴为时间与公式计算一致​​

模型2结果

python 解决微分方程的操作(数值解法)

纵轴

为电容两端电压,横轴为时间标题

最后我们可以根据调节电阻到达不同的状态

python 解决微分方程的操作(数值解法)

R=0.01,欠阻尼

python 解决微分方程的操作(数值解法)

R=1.7,临界阻尼

python 解决微分方程的操作(数值解法)

R=100,过阻尼

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中的map()函数和reduce()函数的用法
Apr 27 Python
python使用socket进行简单网络连接的方法
Apr 29 Python
Python常用的内置序列结构(列表、元组、字典)学习笔记
Jul 08 Python
numpy.linspace函数具体使用详解
May 27 Python
Python学习笔记之变量、自定义函数用法示例
May 28 Python
python实现批量nii文件转换为png图像
Jul 18 Python
Django CSRF跨站请求伪造防护过程解析
Jul 31 Python
python文件处理fileinput使用方法详解
Jan 02 Python
MoviePy常用剪辑类及Python视频剪辑自动化
Dec 18 Python
Python之多进程与多线程的使用
Feb 23 Python
刚学完怎么用Python实现定时任务,转头就跑去撩妹!
Jun 05 Python
Python 多线程处理任务实例
Nov 07 Python
python 实现体质指数BMI计算
May 26 #Python
Python 如何解决稀疏矩阵运算
Python selenium模拟网页点击爬虫交管12123违章数据
python scipy 稀疏矩阵的使用说明
python中os.path.join()函数实例用法
May 26 #Python
python实现简单的井字棋
May 26 #Python
python 办公自动化——基于pyqt5和openpyxl统计符合要求的名单
You might like
php检测iis环境是否支持htaccess的方法
2014/02/18 PHP
PHP程序员常见的40个陋习,你中了几个?
2014/11/20 PHP
php通过session防url攻击方法
2014/12/10 PHP
php通过ksort()函数给关联数组按照键排序的方法
2015/03/18 PHP
php使用for语句输出三角形的方法
2015/06/09 PHP
thinkPHP中_initialize方法实例分析
2016/12/05 PHP
PHP生成(支持多模板)二维码海报代码
2018/04/30 PHP
Jquery 最近浏览过的商品的功能实现代码
2010/05/14 Javascript
Google AJAX 搜索 API实现代码
2010/11/17 Javascript
基于Jquery的简单图片切换效果
2011/01/06 Javascript
JQuery触发radio或checkbox的change事件
2012/12/18 Javascript
Jquery多选下拉列表插件jquery multiselect功能介绍及使用
2013/05/24 Javascript
倒记时60刷新网页的js代码
2014/02/18 Javascript
window.location不跳转的问题解决方法
2014/04/17 Javascript
原生Javascript封装的一个AJAX函数分享
2014/10/11 Javascript
bootstrap折叠调用collapse()后data-parent不生效的快速解决办法
2017/02/23 Javascript
javascript、php关键字搜索函数的使用方法
2018/05/29 Javascript
通过jquery.cookie.js实现记住用户名、密码登录功能
2018/06/20 jQuery
从零学Python之引用和类属性的初步理解
2014/05/15 Python
wxpython 最小化到托盘与欢迎图片的实现方法
2014/06/09 Python
Python爬虫之UserAgent的使用实例
2019/02/21 Python
详解python 模拟豆瓣登录(豆瓣6.0)
2019/04/18 Python
django多文件上传,form提交,多对多外键保存的实例
2019/08/06 Python
tensorflow基于CNN实战mnist手写识别(小白必看)
2020/07/20 Python
Pycharm配置autopep8实现流程解析
2020/11/28 Python
如何为DataGridView添加一个定制的Column Type
2014/01/21 面试题
写clone()方法时,通常都有一行代码,是什么?
2012/10/31 面试题
应届生保险求职信
2013/11/11 职场文书
创业计划书模版
2014/02/05 职场文书
教师节演讲稿
2014/05/06 职场文书
大型公益活动策划方案
2014/08/20 职场文书
乡镇党员干部四风对照检查材料思想汇报
2014/09/27 职场文书
新郎婚礼答谢词
2015/01/04 职场文书
2015年感恩母亲节的演讲稿
2015/03/18 职场文书
开会通知
2015/04/20 职场文书
创业计划书之都市休闲农庄
2019/12/28 职场文书