python 解决微分方程的操作(数值解法)


Posted in Python onMay 26, 2021

Python求解微分方程(数值解法)

对于一些微分方程来说,数值解法对于求解具有很好的帮助,因为难以求得其原方程。

比如方程:

python 解决微分方程的操作(数值解法)

但是我们知道了它的初始条件,这对于我们叠代求解很有帮助,也是必须的。

python 解决微分方程的操作(数值解法)

那么现在我们也用Python去解决这一些问题,一般的数值解法有欧拉法、隐式梯形法等,我们也来看看这些算法对叠代的精度有什么区别?

```python
```python
import numpy as np
from scipy.integrate import odeint
from matplotlib import pyplot as plt
import os
#先从odeint函数直接求解微分方程
#创建欧拉法的类
class Euler:
    #构造方法,当创建对象的时候,自动执行的函数
    def __init__(self,h,y0):
        #将对象与对象的属性绑在一起
        self.h = h
        self.y0 = y0
        self.y = y0
        self.n = 1/self.h
        self.x = 0
        self.list = [1]
        #欧拉法用list列表,其x用y叠加储存
        self.list2 = [1]
        self.y1 = y0
        #改进欧拉法用list2列表,其x用y1叠加储存
        self.list3 = [1]
        self.y2 = y0
        #隐式梯形法用list3列表,其x用y2叠加储存
    #欧拉法的算法,算法返回t,x
    def countall(self):
        for i in range(int(self.n)):
            y_dere = -20*self.list[i]
            #欧拉法叠加量y_dere = -20 * x
            y_dere2 = -20*self.list2[i] + 0.5*400*self.h*self.list2[i]
            #改进欧拉法叠加量 y_dere2 = -20*x(k) + 0.5*400*delta_t*x(k)
            y_dere3 = (1-10*self.h)*self.list3[i]/(1+10*self.h)
            #隐式梯形法计算 y_dere3 = (1-10*delta_t)*x(k)/(1+10*delta_t)
            self.y += self.h*y_dere
            self.y1 += self.h*y_dere2
            self.y2 =y_dere3
            self.list.append(float("%.10f" %self.y))
            self.list2.append(float("%.10f"%self.y1))
            self.list3.append(float("%.10f"%self.y2))
        return np.linspace(0,1,int(self.n+1)), self.list,self.list2,self.list3
step = input("请输入你需要求解的步长:")
step = float(step)
work1 = Euler(step,1)
ax1,ay1,ay2,ay3 = work1.countall()
#画图工具plt
plt.figure(1)
plt.subplot(1,3,1)
plt.plot(ax1,ay1,'s-.',MarkerFaceColor = 'g')
plt.xlabel('横坐标t',fontproperties = 'simHei',fontsize =20)
plt.ylabel('纵坐标x',fontproperties = 'simHei',fontsize =20)
plt.title('欧拉法求解微分线性方程步长为'+str(step),fontproperties = 'simHei',fontsize =20)
plt.subplot(1,3,2)
plt.plot(ax1,ay2,'s-.',MarkerFaceColor = 'r')
plt.xlabel('横坐标t',fontproperties = 'simHei',fontsize =20)
plt.ylabel('纵坐标x',fontproperties = 'simHei',fontsize =20)
plt.title('改进欧拉法求解微分线性方程步长为'+str(step),fontproperties = 'simHei',fontsize =20)
plt.subplot(1,3,3)
plt.plot(ax1,ay3,'s-.',MarkerFaceColor = 'b')
plt.xlabel('横坐标t',fontproperties = 'simHei',fontsize =20)
plt.ylabel('纵坐标x',fontproperties = 'simHei',fontsize =20)
plt.title('隐式梯形法求解微分线性方程步长为'+str(step),fontproperties = 'simHei',fontsize =20)
plt.figure(2)
plt.plot(ax1,ay1,ax1,ay2,ax1,ay3,'s-.',MarkerSize = 3)
plt.xlabel('横坐标t',fontproperties = 'simHei',fontsize =20)
plt.ylabel('纵坐标x',fontproperties = 'simHei',fontsize =20)
plt.title('三合一图像步长为'+str(step),fontproperties = 'simHei',fontsize =20)
ax = plt.gca()
ax.legend(('$Eular$','$fixed Eular$','$trapezoid$'),loc = 'lower right',title = 'legend')
plt.show()
os.system("pause")

对于欧拉法,它的叠代方法是:

python 解决微分方程的操作(数值解法)

改进欧拉法的叠代方法:

python 解决微分方程的操作(数值解法)

隐式梯形法:

python 解决微分方程的操作(数值解法)

对于不同的步长,其求解的精度也会有很大的不同,我先放一几张结果图:

python 解决微分方程的操作(数值解法)python 解决微分方程的操作(数值解法)

补充:基于python的微分方程数值解法求解电路模型

安装环境包

安装numpy(用于调节range) 和 matplotlib(用于绘图)

在命令行输入

pip install numpy 
pip install matplotlib

电路模型和微分方程

模型1

无损害,电容电压为5V,电容为0.01F,电感为0.01H的并联谐振电路

电路模型1

python 解决微分方程的操作(数值解法)

微分方程1

python 解决微分方程的操作(数值解法)

模型2

带电阻损耗的电容电压为5V,电容为0.01F,电感为0.01H的的并联谐振

电路模型2

python 解决微分方程的操作(数值解法)

 

 

微分方程2

python 解决微分方程的操作(数值解法)

python代码

模型1

import numpy as np
import matplotlib.pyplot as plt
 
L = 0.01  #电容的值 F
C = 0.01  #电感的值 L
u_0 = 5   #电容的初始电压
u_dot_0 = 0
 
def equition(u,u_dot):#二阶方程
    u_double_dot = -u/(L*C)
    return u_double_dot
 
def draw_plot(time_step,time_scale):#时间步长和范围
    u = u_0
    u_dot = u_dot_0  #初始电压和电压的一阶导数
    time_list = [0] #时间lis
    Votage = [u] #电压list
    plt.figure()
    for time in np.arange(0,time_scale,time_step):#使用欧拉数值计算法 一阶近似
        u_double_dot = equition(u,u_dot) #二阶导数
        u_dot = u_dot + u_double_dot*time_step #一阶导数
        u = u + u_dot*time_step #电压
        time_list.append(time) #结果添加
        Votage.append(u) #结果添加
        print(u)
    plt.plot(time_list,Votage,"b--",linewidth=1) #画图
    plt.show()
    plt.savefig("easyplot.png")
 
if __name__ == '__main__':
    draw_plot(0.0001,1)

模型2

import numpy as np
import matplotlib.pyplot as plt
 
L = 0.01  #电容的值 F
C = 0.01  #电感的值 L
R = 0.1   #电阻值
u_0 = 5   #电容的初始电压
u_dot_0 = 0
 
def equition(u,u_dot):#二阶方程
    u_double_dot =(-R*C*u_dot -u)/(L*C)
    return u_double_dot
 
def draw_plot(time_step,time_scale):#时间步长和范围
    u = u_0
    u_dot = u_dot_0  #初始电压和电压的一阶导数
    time_list = [0] #时间lis
    Votage = [u] #电压list
    plt.figure()
    for time in np.arange(0,time_scale,time_step):#使用欧拉数值计算法 一阶近似
        u_double_dot = equition(u,u_dot) #二阶导数
        u_dot = u_dot + u_double_dot*time_step #一阶导数
        u = u + u_dot*time_step #电压
        time_list.append(time) #结果添加
        Votage.append(u) #结果添加
        print(u)
    plt.plot(time_list,Votage,"b-",linewidth=1) #画图
    plt.show()
    plt.savefig("result.png")
 
if __name__ == '__main__':
    draw_plot(0.0001,1)

数值解结果

模型1

python 解决微分方程的操作(数值解法)

纵轴为电容两端电压,横轴为时间与公式计算一致​​

模型2结果

python 解决微分方程的操作(数值解法)

纵轴

为电容两端电压,横轴为时间标题

最后我们可以根据调节电阻到达不同的状态

python 解决微分方程的操作(数值解法)

R=0.01,欠阻尼

python 解决微分方程的操作(数值解法)

R=1.7,临界阻尼

python 解决微分方程的操作(数值解法)

R=100,过阻尼

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
编写同时兼容Python2.x与Python3.x版本的代码的几个示例
Mar 30 Python
python中map()与zip()操作方法
Feb 27 Python
python连接mysql实例分享
Oct 09 Python
TensorFlow如何实现反向传播
Feb 06 Python
python利用thrift服务读取hbase数据的方法
Dec 27 Python
详解Python 调用C# dll库最简方法
Jun 20 Python
Python替换月份为英文缩写的实现方法
Jul 15 Python
python实现七段数码管和倒计时效果
Nov 23 Python
多个python文件调用logging模块报错误
Feb 12 Python
Python 线性回归分析以及评价指标详解
Apr 02 Python
浅谈Python中的字符串
Jun 10 Python
linux centos 7.x 安装 python3.x 替换 python2.x的过程解析
Dec 14 Python
python 实现体质指数BMI计算
May 26 #Python
Python 如何解决稀疏矩阵运算
Python selenium模拟网页点击爬虫交管12123违章数据
python scipy 稀疏矩阵的使用说明
python中os.path.join()函数实例用法
May 26 #Python
python实现简单的井字棋
May 26 #Python
python 办公自动化——基于pyqt5和openpyxl统计符合要求的名单
You might like
Get或Post提交值的非法数据处理
2006/10/09 PHP
php实现mysql同步的实现方法
2009/10/21 PHP
PHP中遇到的时区问题解决方法
2015/07/23 PHP
PHP判断上传文件类型的解决办法
2015/10/20 PHP
JavaScript计算字符串中每个字符出现次数的小例子
2013/07/02 Javascript
JavaScript获取/更改文本框的值的实例代码
2013/08/02 Javascript
javascript的数组和常用函数详解
2014/05/09 Javascript
javascript学习笔记之10个原生技巧
2014/05/21 Javascript
JS实现模拟风力的雪花飘落效果
2015/05/13 Javascript
js中变量的连续赋值(实例讲解)
2017/07/08 Javascript
CentOS环境中MySQL修改root密码方法
2018/01/07 Javascript
Node.JS循环删除非空文件夹及子目录下的所有文件
2018/03/12 Javascript
vue单页面实现当前页面刷新或跳转时提示保存
2018/11/02 Javascript
微信小程序模板template简单用法示例
2018/12/04 Javascript
Vue.js中provide/inject实现响应式数据更新的方法示例
2019/10/16 Javascript
[42:52]IG vs VGJ.T 2018国际邀请赛小组赛BO2 第二场 8.18
2018/08/19 DOTA
Linux 发邮件磁盘空间监控(python)
2016/04/23 Python
python实现图片处理和特征提取详解
2017/11/13 Python
Python3 执行系统命令并获取实时回显功能
2019/07/09 Python
python使用tomorrow实现多线程的例子
2019/07/20 Python
python批量处理文件或文件夹
2020/07/28 Python
Python实现线性插值和三次样条插值的示例代码
2019/11/13 Python
python 数据分析实现长宽格式的转换
2020/05/18 Python
Python selenium爬虫实现定时任务过程解析
2020/06/08 Python
Elasticsearch py客户端库安装及使用方法解析
2020/09/14 Python
CSS3中background-clip和background-origin的区别示例介绍
2014/03/10 HTML / CSS
html5使用html2canvas实现浏览器截图的示例
2017/08/31 HTML / CSS
使用PDF.JS插件在HTML中预览PDF文件的方法
2018/08/29 HTML / CSS
学校安全检查制度
2014/01/27 职场文书
最美孝心少年事迹材料
2014/08/15 职场文书
家具商场的活动方案
2014/08/16 职场文书
个人授权委托书模板
2014/09/14 职场文书
八项规定自查自纠报告及整改措施
2014/10/26 职场文书
旷课检讨书范文
2015/01/27 职场文书
2016年校园植树节广播稿
2015/12/17 职场文书
【DOTA2】当街暴打?PSG LGD vs VG - DPC 2022 WINTER TOUR CN
2022/04/02 DOTA