python opencv 检测移动物体并截图保存实例


Posted in Python onMarch 10, 2020

最近在老家找工作,无奈老家工作真心太少,也没什么面试机会,不过之前面试一家公司,提了一个有意思的需求,检测河面没有有什么船只之类的物体,我当时第一反应是用opencv做识别,不过回家想想,河面相对的东西比较少,画面比较单一,只需要检测有没有移动的物体不就简单很多嘛,如果做街道垃圾检测的话可能就很复杂了,毕竟街道上行人,车辆,动物,很多干扰物,于是就花了一个小时写了一个小的demo,只需在程序同级目录创建一个img目录就可以了

# -*-coding:utf-8 -*- 
__author__ = "ZJL"
 
import cv2
import time
 
 
# 保存截图
save_path = './img/'
 
# 定义摄像头对象,其参数0表示第一个摄像头
camera = cv2.VideoCapture(0)
 
# 判断视频是否打开
if (camera.isOpened()):
 print('Open')
else:
 print('摄像头未打开')
 
# 测试用,查看视频size
size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)),
  int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT)))
print('size:'+repr(size))
 
# 帧率
fps = 5
# 总是取前一帧做为背景(不用考虑环境影响)
pre_frame = None
 
while(1):
 start = time.time()
 # 读取视频流
 ret, frame = camera.read()
 # 转灰度图
 gray_lwpCV = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 
 if not ret:
  break
 end = time.time()
 
 cv2.imshow("capture", frame)
 
 # 运动检测部分
 seconds = end - start
 if seconds < 1.0 / fps:
  time.sleep(1.0 / fps - seconds)
 gray_lwpCV = cv2.resize(gray_lwpCV, (500, 500))
 # 用高斯滤波进行模糊处理
 gray_lwpCV = cv2.GaussianBlur(gray_lwpCV, (21, 21), 0)
 
 # 如果没有背景图像就将当前帧当作背景图片
 if pre_frame is None:
  pre_frame = gray_lwpCV
 else:
  # absdiff把两幅图的差的绝对值输出到另一幅图上面来
  img_delta = cv2.absdiff(pre_frame, gray_lwpCV)
  #threshold阈值函数(原图像应该是灰度图,对像素值进行分类的阈值,当像素值高于(有时是小于)阈值时应该被赋予的新的像素值,阈值方法)
  thresh = cv2.threshold(img_delta, 25, 255, cv2.THRESH_BINARY)[1]
  # 膨胀图像
  thresh = cv2.dilate(thresh, None, iterations=2)
  # findContours检测物体轮廓(寻找轮廓的图像,轮廓的检索模式,轮廓的近似办法)
  image, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
  for c in contours:
   # 设置敏感度
   # contourArea计算轮廓面积
   if cv2.contourArea(c) < 1000:
    continue
   else:
    print("出现目标物,请求核实")
    # 保存图像
    cv2.imwrite(save_path + str(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) + '.jpg', frame)
    break
  pre_frame = gray_lwpCV
 
  if cv2.waitKey(1) & 0xFF == ord('q'):
   break
 
 
# release()释放摄像头
camera.release()
#destroyAllWindows()关闭所有图像窗口
cv2.destroyAllWindows()

想出现一个矩形框跟随移动物于是进行了改造,结果发现效果不是很理想,不能很好的框住移动目标,要么只框一部分,要么出现在移动目标附近,尴尬

# -*-coding:utf-8 -*- 
__author__ = "ZJL"
 
import cv2
import time
 
 
# 保存截图
save_path = './img/'
 
# 定义摄像头对象,其参数0表示第一个摄像头
camera = cv2.VideoCapture(0)
 
# 判断视频是否打开
if (camera.isOpened()):
 print('Open')
else:
 print('摄像头未打开')
 
# 测试用,查看视频size
size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)),
  int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT)))
print('size:'+repr(size))
 
# 帧率
fps = 5
# 总是取前一帧做为背景(不用考虑环境影响)
pre_frame = None
 
while(1):
 start = time.time()
 # 读取视频流
 ret, frame = camera.read()
 # 转灰度图
 gray_lwpCV = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 
 if not ret:
  break
 end = time.time()
 
 # 显示图像
 # cv2.imshow("capture", frame)
 
 # 运动检测部分
 seconds = end - start
 if seconds < 1.0 / fps:
  time.sleep(1.0 / fps - seconds)
 gray_lwpCV = cv2.resize(gray_lwpCV, (500, 500))
 # 用高斯滤波进行模糊处理
 gray_lwpCV = cv2.GaussianBlur(gray_lwpCV, (21, 21), 0)
 
 # 如果没有背景图像就将当前帧当作背景图片
 if pre_frame is None:
  pre_frame = gray_lwpCV
 else:
  # absdiff把两幅图的差的绝对值输出到另一幅图上面来
  img_delta = cv2.absdiff(pre_frame, gray_lwpCV)
  #threshold阈值函数(原图像应该是灰度图,对像素值进行分类的阈值,当像素值高于(有时是小于)阈值时应该被赋予的新的像素值,阈值方法)
  thresh = cv2.threshold(img_delta, 25, 255, cv2.THRESH_BINARY)[1]
  # 膨胀图像
  thresh = cv2.dilate(thresh, None, iterations=2)
  # findContours检测物体轮廓(寻找轮廓的图像,轮廓的检索模式,轮廓的近似办法)
  image, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
  for c in contours:
   # 设置敏感度
   # contourArea计算轮廓面积
   if cv2.contourArea(c) < 1000:
    continue
   else:
    # 画出矩形框架,返回值x,y是矩阵左上点的坐标,w,h是矩阵的宽和高
    (x, y, w, h) = cv2.boundingRect(c)
    # rectangle(原图,(x,y)是矩阵的左上点坐标,(x+w,y+h)是矩阵的右下点坐标,(0,255,0)是画线对应的rgb颜色,2是所画的线的宽度)
    cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
    # putText 图片中加入文字
    cv2.putText(frame, "now time: {}".format(str(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) ), (10, 20),
       cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
    print("出现目标物,请求核实")
    # 保存图像
    cv2.imwrite(save_path + str(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) + '.jpg', frame)
    break
  pre_frame = gray_lwpCV
 
  # 显示图像
  cv2.imshow("capture", frame)
  # cv2.imshow("Thresh", thresh)
  # 进行阀值化来显示图片中像素强度值有显著变化的区域的画面
  cv2.imshow("Frame Delta", img_delta)
 
 if cv2.waitKey(1) & 0xFF == ord('q'):
  break
 
 
# release()释放摄像头
camera.release()
#destroyAllWindows()关闭所有图像窗口
cv2.destroyAllWindows()

补充知识:基于python使用opencv监测视频指定区域是否有物体移动

缘由:车停车位,早上看到右后轮有很明显的干了的水渍,前一天下雨,车身其他位置没有如此显眼的水渍,不可能是前天雨水的水渍,仔细一看,从油箱盖一直往下,很明显,有某个X德的人故意尿在车上的,找物业拿到视频监控文件,自己看太费时间,于是。。。

思路:读取视频的关键帧,对比指定区域的数据,如果变化较大(排除环境光线变化),则有物体移动,截取当前帧保存备用。

行动:对于python处理视频不了解,找来找去,找到opencv,符合需求。

python opencv 检测移动物体并截图保存实例

原来是个熊孩子小学生,上楼就到家了,这爹妈教也没管教说不能随地大小便么。

代码如下:

#!/usr/bin/env python
# coding: utf-8
# @author: sSWans
# @file: main.py
# @time: 2018/1/11 15:54
 
import os
import random
from _datetime import datetime
 
import cv2
 
path = 'F:\\111'
 
 
# 遍历目录下的视频文件
def get_files(fpath):
 files_list = []
 for i in os.listdir(fpath):
  files_list.append(os.path.join(fpath, i))
 return files_list
 
 
# 视频处理
def process(file, fname):
 # camera = cv2.VideoCapture(0) # 参数0表示第一个摄像头
 camera = cv2.VideoCapture(file)
 # 参数设置,监测矩形区域
 rectangleX = 880 # 矩形最左点x坐标
 rectangleXCols = 0 # 矩形x轴上的长度
 rectangleY = 650 # 矩形最上点y坐标
 rectangleYCols = 100 # 矩形y轴上的长度
 KeyFrame = 17 # 取关键帧的间隔数,根据视频的帧率设置,我的视频是16FPS
 counter = 1 # 取帧计数器
 pre_frame = None # 总是取视频流前一帧做为背景相对下一帧进行比较
 
 # 判断视频是否打开
 if not camera.isOpened():
  print('视频文件打开失败!')
 
 width = int(camera.get(cv2.CAP_PROP_FRAME_WIDTH))
 height = int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT))
 print('视频尺寸(高,宽):', height, width)
 
 if rectangleXCols == 0:
  rectangleXCols = width - rectangleX
 if rectangleYCols == 0:
  rectangleYCols = height - rectangleY
 start_time = datetime.now()
 print('{} 开始处理文件: {}'.format(start_time.strftime('%H:%M:%S'), fname))
 while True:
  grabbed, frame_lwpCV = camera.read() # 读取视频流
  if grabbed:
   if counter % KeyFrame == 0:
    # if not grabbed:
    #  print('{} 完成处理文件: {} 。。。 '.format(datetime.now().strftime('%H:%M:%S'),fname))
    #  break
    gray_lwpCV = cv2.cvtColor(frame_lwpCV, cv2.COLOR_BGR2GRAY) # 转灰度图
    gray_lwpCV = gray_lwpCV[rectangleY:rectangleY + rectangleYCols, rectangleX:rectangleX + rectangleXCols]
    lwpCV_box = cv2.rectangle(frame_lwpCV, (rectangleX, rectangleY),
           (rectangleX + rectangleXCols, rectangleY + rectangleYCols), (0, 255, 0),
           2) # 用绿色矩形框显示监测区域
    # cv2.imshow('lwpCVWindow', frame_lwpCV) # 显示视频播放窗口,开启消耗时间大概是3倍
    gray_lwpCV = cv2.GaussianBlur(gray_lwpCV, (21, 21), 0)
    if pre_frame is None:
     pre_frame = gray_lwpCV
    else:
     img_delta = cv2.absdiff(pre_frame, gray_lwpCV)
     thresh = cv2.threshold(img_delta, 25, 255, cv2.THRESH_BINARY)[1]
     thresh = cv2.dilate(thresh, None, iterations=2)
     image, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
                 cv2.CHAIN_APPROX_SIMPLE)
     for x in contours:
      if cv2.contourArea(x) < 1000: # 设置敏感度
       continue
      else:
       cv2.imwrite(
        'image/' + fname + '_' + datetime.now().strftime('%H%M%S') + '_' + str(
         random.randrange(0, 9999)) + '.jpg',
        frame_lwpCV)
       # print("监测到移动物体。。。 ", datetime.now().strftime('%H:%M:%S'))
       break
     pre_frame = gray_lwpCV
   counter += 1
   key = cv2.waitKey(1) & 0xFF
   if key == ord('q'):
    break
  else:
   end_time = datetime.now()
   print('{} 完成处理文件: {} 耗时:{}'.format(end_time.strftime('%H:%M:%S'), fname, end_time - start_time))
   break
 camera.release()
 # cv2.destroyAllWindows() # 与上面的imshow对应
 
 
for file in get_files(path):
 fname = file.split('\\')[-1].replace('.mp4', '')
 process(file, fname)

以上这篇python opencv 检测移动物体并截图保存实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
在Python编程过程中用单元测试法调试代码的介绍
Apr 02 Python
Python中使用items()方法返回字典元素对的教程
May 21 Python
Python爬虫包 BeautifulSoup  递归抓取实例详解
Jan 28 Python
简述Python2与Python3的不同点
Jan 21 Python
python控制nao机器人身体动作实例详解
Apr 29 Python
Python FTP文件定时自动下载实现过程解析
Nov 12 Python
Python小程序之在图片上加入数字的代码
Nov 26 Python
手动安装python3.6的操作过程详解
Jan 13 Python
Python3运算符常见用法分析
Feb 14 Python
python文件读取失败怎么处理
Jun 23 Python
Python经典五人分鱼实例讲解
Jan 04 Python
OpenCV绘制圆端矩形的示例代码
Aug 30 Python
Python标准库json模块和pickle模块使用详解
Mar 10 #Python
Python xlrd excel文件操作代码实例
Mar 10 #Python
python图片剪裁代码(图片按四个点坐标剪裁)
Mar 10 #Python
python 截取XML中bndbox的坐标中的图像,另存为jpg的实例
Mar 10 #Python
Python代码一键转Jar包及Java调用Python新姿势
Mar 10 #Python
Python读取VOC中的xml目标框实例
Mar 10 #Python
Python 读取xml数据,cv2裁剪图片实例
Mar 10 #Python
You might like
php面向对象全攻略 (十一)__toString()用法 克隆对象 __call处理调用错误
2009/09/30 PHP
PHP判断表单复选框选中状态完整例子
2014/06/24 PHP
PHP中的switch语句的用法实例详解
2015/10/21 PHP
php单例模式的简单实现方法
2016/06/10 PHP
jQuery ajax+PHP实现的级联下拉列表框功能示例
2019/02/12 PHP
JavaScript DOM 学习第三章 内容表格
2010/02/19 Javascript
JavaScript中的匀速运动和变速(缓冲)运动详细介绍
2012/11/11 Javascript
自动最大化窗口的Javascript代码
2013/05/22 Javascript
查找Oracle高消耗语句的方法
2014/03/22 Javascript
JavaScript中constructor()方法的使用简介
2015/06/05 Javascript
JavaScript微信定位功能实现方法
2016/11/29 Javascript
详解基于 Nuxt 的 Vue.js 服务端渲染实践
2017/10/24 Javascript
在Vue中用canvas实现二维码和图片合成海报的方法
2019/06/10 Javascript
vue移动端写的拖拽功能示例代码
2020/09/09 Javascript
nuxt.js 在middleware(中间件)中实现路由鉴权操作
2020/11/06 Javascript
Python使用自带的ConfigParser模块读写ini配置文件
2016/06/26 Python
Python数据可视化编程通过Matplotlib创建散点图代码示例
2017/12/09 Python
利用python将json数据转换为csv格式的方法
2018/03/22 Python
Python3自动签到 定时任务 判断节假日的实例
2018/11/13 Python
查看python安装路径及pip安装的包列表及路径
2019/04/03 Python
Python 串口读写的实现方法
2019/06/12 Python
在pytorch中为Module和Tensor指定GPU的例子
2019/08/19 Python
python基于plotly实现画饼状图代码实例
2019/12/16 Python
CSS3轻松实现清新 Loading 效果的简单实例
2016/06/06 HTML / CSS
用CSS3将你的设计带入下个高度
2009/08/08 HTML / CSS
德国团购网站:Groupon德国
2018/03/13 全球购物
机电一体化专业应届本科生求职信
2013/09/27 职场文书
儿科护士自我鉴定
2013/10/14 职场文书
物理专业本科生自荐信
2014/01/30 职场文书
无刑事犯罪记录证明范本
2014/09/29 职场文书
三方股东合作协议书
2014/10/28 职场文书
法定代表人证明书
2014/11/28 职场文书
领导参观欢迎词
2015/01/26 职场文书
道士塔读书笔记
2015/06/30 职场文书
Python爬虫之爬取哔哩哔哩热门视频排行榜
2021/04/28 Python
Python 内置函数速查表一览
2021/06/02 Python